首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用不同的压铸工艺对新型机械外壳用Mg-Al-Zn-Ti-V镁合金试样进行了铸造,并进行了耐磨损性能和力学性能的测试与分析。结果表明:随浇注温度、压射速度和压射比压的增加,试样的耐磨损性能和强度均先提升后下降。新型机械外壳用镁合金的压铸工艺参数优选为:700℃浇注温度、3 m/s压射速度、80 MPa压射比压。与640℃压铸温度相比,当浇注温度为700℃时,Mg-Al-Zn-Ti-V镁合金的磨损体积减小48.1%、抗拉强度增大33 MPa;与1 m/s压射速度相比,当压射速度为3 m/s时合金的磨损体积减小36.4%、抗拉强度增大29 MPa;与50MPa压射比压相比,当压射比压为80 MPa时合金的磨损体积减小50.0%、抗拉强度增大31 MPa。  相似文献   

2.
采用不同浇注温度和型腔真空压力进行了AM50Ce汽车镁合金的真空压铸试验,并进行了显微组织和力学性能的测试与分析。结果表明:在650~730℃浇注温度和1~30 kPa型腔真空压力,随浇注温度升高,型腔真空压力减小合金的强度先提高后下降。与650℃浇注相比,型腔真空压力8 KPa690℃浇注时合金抗拉强度增大89MPa(从174到263MPa),平均晶粒尺寸减小16μm(从22到6μm);690℃浇注时,与30 kPa型腔真空压力相比,采用8kPa型腔真空压力时合金抗拉强度增大71MPa(从192到263 MPa),平均晶粒尺寸减小14μm(从20到6μm)。合金的浇注温度和型腔真空压力分别优选为690℃、8 kPa。  相似文献   

3.
采用不同的浇注温度和压射比压进行了汽车用新型AZ91-SrCe镁合金的压铸试验,并进行了显微组织和高温耐磨性的测试与分析。结果表明,在浇注温度670~710℃、压射比压30~70 MPa,随浇注温度和压射比压的提高,合金的平均晶粒尺寸和高温磨损体积先下降后提高,高温耐磨性先增加后减小。在浇注温度690℃和压射比压60MPa时,合金的平均晶粒尺寸最小(25μm),高温磨损体积最小(51×10~(-3)mm~3)。AZ91-SrCe镁合金压铸时,浇注温度和压射比压分别优选为690℃和60 MPa。  相似文献   

4.
采用不同的浇注温度、压射速度和压射比压对汽车用新型高强Mg-8Gd-4Y-0.3Zr-0.3Ti镁合金试样进行了制备并对力学性能进行了测试和分析。结果表明:与650℃浇注温度相比,710℃浇注温度下的抗拉强度和屈服强度分别增大了31、27 MPa;与100 m/min压射速度相比,200 m/min压射速度下的抗拉强度和屈服强度分别增大了22、16MPa;与50 MPa压射比压相比,90 MPa压射比压下的抗拉强度和屈服强度分别增大了26、24 MPa;伸长率变化幅度较小。Mg-8Gd-4Y-0.3Zr-0.3Ti镁合金的压铸工艺参数优选为:710℃浇注温度、200 m/min压射速度、90 MPa压射比压。  相似文献   

5.
采用不同的工艺参数进行了AZ91-0.5In镁合金电机盖试样的压铸试验,并进行了室温力学性能测试与分析。结果表明,随压射比压增大或压射速度增快,试样的抗拉强度和屈服强度均先增大后减小,而断后伸长率在7%~9%范围内先减小后增大。当压射比压90 MPa、压射速度5 m/s时,试样的抗拉强度和屈服强度达到峰值,分别为262、171 MPa。AZ91-0.5In镁合金压铸电机盖的压射比压优选90 MPa、压射速度优选5 m/s。  相似文献   

6.
曹辉  杜恭贺 《机床与液压》2020,48(22):59-63
对Mg-9Al-1Zn-05Ce汽车新型压铸零部件试样进行了压铸成型,并进行了力学性能和耐腐蚀性能的测试和分析。结果表明:随浇注温度的升高和压射速度的加快,试样的抗拉强度、屈服强度先增大后减小,腐蚀电位正移后逐渐负移,伸长率变化幅度较小,力学性能和耐腐蚀性能均先提升后下降;与620 ℃浇注温度压铸时相比,650 ℃浇注温度下的抗拉强度、屈服强度分别增大了1308%、2378%,断后伸长率减小了1%,腐蚀电位正移了43 mV;与1 m/s压射速度压铸时相比,3 m/s压铸下的抗拉强度、屈服强度分别增大了1120%、1645%,断后伸长率减小了08%,腐蚀电位正移了31 mV。Mg-9Al-1Zn-05Ce汽车新型压铸零部件的压铸工艺参数优选为:650 ℃始锻温度、3 m/s压射速度。  相似文献   

7.
在适宜的压射速度和压射比压下,研究浇注温度和铸型温度对压铸镁合金AZ91D组织与性能的影响。实验结果表明:在其它工艺参数一定,浇注温度,铸型温度变化对压铸镁合金AZ91D组织与性能的有较大的影响。当压射速度为3.Om/s,压射比压为70MPa,浇注温度为68512,铸型温度为200℃,压铸镁合金AZ91D可以获得力学性能较好的铸件。  相似文献   

8.
采用光学显微镜(OM)、X射线衍射分析(XRD)、带有能谱仪(EDS)的扫描电子显微镜(SEM)、透射电子显微镜(TEM)和力学性能测试等方法,研究了压射速度和压射比压对RE(Ce和Y)、Sr和AlTiB复合变质的AZ91D压铸镁合金相机壳体毛坯件的微观组织和力学性能的影响。结果表明:随着压射速度和压射比压的增加,合金的强度先增大后减小、伸长率先减小后增加,由此得到优化的压铸工艺参数为浇铸温度680℃、压射速度6 m/s和压射比压90 MPa。RE、Sr和AlTiB复合变质显著细化AZ91D合金的α-Mg晶粒和Mg17Al12相,同时在基体中引入了细小弥散的TiB2、Al11Ce3、Al2Y和Al10Ce2Mn7相,它们的协同强化作用显著提升了合金的强度。因此,变质的合金获得了最优的力学性能:抗拉强度为287 MPa,屈服强度为196 MPa,伸长率为4.7%。  相似文献   

9.
采用不同的浇注温度、压射速度和压射比压对汽车外壳零件用新型镁合金Mg-9Al-0.8Zn-0.5V-0.3In试样进行了铸造试验,并进行了耐腐蚀性能的测试与分析。结果表明:随浇注温度、压射速度和压射比压的增加,试样的腐蚀电位先正移后负移,耐腐蚀性能先提升再下降。与660℃浇注温度相比,700℃浇注温度下试样的腐蚀电位正移了34m V;与50 m/min压射速度相比,200 m/min下试样的腐蚀电位正移了28 m V;与80 MPa压射比压相比,120 MPa压射比压下试样的腐蚀电位正移了42 m V。汽车外壳用镁合金的压铸工艺参数优选为:700℃浇注温度、200 m/min压射速度、120 MPa压射比压。  相似文献   

10.
《热加工工艺》2021,50(7):92-96
采用不同的浇注温度和比压对AZ31镁合金汽车轮毂进行了液态模锻成形,并进行了显微组织、耐磨损性能和耐腐蚀性能的测试与分析。结果表明:随比压和浇注温度的增加,轮毂试样的平均晶粒尺寸和磨损体积均先减小后增大,腐蚀电位先正移后负移,耐磨损性能和耐腐蚀性能先提升后下降。与30 MPa比压相比较,50 MPa比压时试样的平均晶粒尺寸和磨损体积分别减小了27.39%、41.67%,腐蚀电位正移了36 m V。与680℃浇注温度相比,700℃浇注时试样的平均晶粒尺寸和磨损体积分别减小了33.33%、47.5%,腐蚀电位正移了47 m V。AZ31镁合金汽车轮毂的液态模锻工艺参数优选为:50 MPa比压、700℃浇注温度。  相似文献   

11.
使用不同的浇注温度、压射比压和型腔温度进行了机械壳体用Mg-Al-Zn-Ti合金试样的压铸试验,并进行了磨损试验与分析。结果表明:当浇注温度从660℃增大到740℃,压射比压从35MPa增大到75MPa时,合金的耐磨性均先提高后下降;当型腔温度从150℃增大到250℃时,合金耐磨性先提高后基本不变。与660℃浇注相比,浇注温度700℃时合金的磨损体积(30.5×10~(-3)mm~3)减小33.7%;与压射比压35MPa相比,压射比压65MPa时合金的磨损体积(30.5×10~(-3)mm~3)减小31.2%;与型腔温度150℃相比,型腔温度200℃时合金的磨损体积(30.5×10~(-3)mm~3)减小35.4%。合金的浇注温度、压射比压和型腔温度分别优选为700℃、65MPa、200℃。  相似文献   

12.
采用不同的比压对AZ80Ti建筑用新型镁合金进行了液态模锻,并进行了显微组织和力学性能的测试与分析。结果表明:随比压从100 MPa增大至180 MPa,AZ80镁合金液态模锻件强度不断增大,伸长率减小,平均晶粒尺寸减小。与100 MPa比压相比,采用140 MPa比压成形的AZ80Ti镁合金试样的平均晶粒尺寸减小了59.13%,抗拉强度和屈服强度分别增大了42、41 MPa。AZ80Ti镁合金液态模锻的合理比压为140 MPa。  相似文献   

13.
阎峰云  张玉海 《热加工工艺》2007,36(21):35-37,40
在适宜的压射速度和压射比压下,研壳了浇注温度和铸型温度对压铸镁合金AM60B组织与性能的影响。实验结果表明:在其他工艺参数一定时,浇注温度、铸型温度变化对压铸镁合金AM60B组织与性能有较大的影响;当压射速度为3.0m/s,压射比压为70MPa,浇注温度为685℃,铸型温度为200℃时.压铸镁合金AM60B可以获得力学性能较好的铸件。  相似文献   

14.
采用剪切低温浇注工艺(LSPSF)制备了半固态7075合金浆料,对流变挤压铸造成形铸件的组织和力学性能进行分析,研究了压射比压对7075合金组织及力学性能的影响。结果表明,随着压射比压从50 MPa增大到110 MPa,晶粒平均直径从39.3μm减小到31.6μm;铸件容易发生液相偏析固相率从82%减少到63%,液相偏析有增大倾向,抗拉强度增加,但伸长率先增加后减小;压射比压为80MPa左右时,能生产出综合性能良好的7075合金铸件。  相似文献   

15.
对Mg-8Al-0.6Zn-0.3Ce新型镁合金汽车件进行了压铸成型,并进行了冲击性能和磨损性能的测试、比较和分析。结果表明:随压射速度和压射比压的增加,压铸件的冲击性能和磨损性能均先提高后下降。与120 mm/min压射速度相比,180 mm/min压射速度下的冲击吸收功增大了25.81%,磨损体积减小了25%;与40 MPa压射比压相比,80MPa压射比压下的冲击吸收功增大了32.2%,磨损体积减小了30%。Mg-8Al-0.6Zn-0.3Ce镁合金压铸件的工艺参数优选为:180 mm/min压射速度、80 MPa压射比压。  相似文献   

16.
研究了浇注温度、模具温度和内浇道速度对镁合金压铸件抗拉强度和晶粒尺寸的影响规律。结果表明,随浇注温度和内浇道速度的升高,试样的抗拉强度先增大再减小,晶粒尺寸则先减小再增大;当模具温度升高时,试样的抗拉强度随着模具温度升高而增大,晶粒尺寸则随之减小。当压铸工艺参数(浇注温度680℃、模具温度为215℃、内浇道速度为70m/s)适宜时,AZ91HP合金标准拉伸试棒的抗拉强度吼稳定在224.2MPa,密度ρ稳定在1.77g/cm^3,晶粒尺寸只有14.4μm。通过线性回归建立了晶粒尺寸和抗拉强度之间的经验关系。  相似文献   

17.
基于液态压铸技术,研究了压射速度对Al-10%Si合金组织与性能的影响,同时利用扫描电子显微镜(SEM)对其拉伸断口形貌进行分析.实验结果表明:随着压射速度的增大,试样的抗拉强度、伸长率和硬度先增加而后减小,而晶粒尺寸先减小而后增大;随着压射速度的增大,合金的断裂方式仍然属韧窝型韧性断裂.在本实验条件下,压射比压16MPa、模具温度150℃、浇注温度720℃、压射速度2.5m/s时,压铸Al-10%Si合金的力学性能较优,其力学性能可以达到σb=233MPa,δ5=8.57%,HBS=57.9.  相似文献   

18.
研究液态压铸过程中浇注温度和压射速度对Al-30Si压铸组织和力学性能的影响.结果表明,随着浇注温度的升高,Al-30Si压铸组织中的初生硅尺寸在不断减小.温度从780℃升高到820℃时,初生硅的尺寸出现了大幅度的减小,温度再升高则变化不明显;同时,抗拉强度随温度的变化也表现出同样的趋势.而压射速度对Al-30Si液态压铸组织的影响要比浇注温度的影响小得多.初生硅的尺寸随压射速度的增加有减小的趋势,但减小的幅度不大.当压射速度为8m/s时,压铸组织出现了明显的气孔、缩孔等缺陷.随着压射速度的增加,其抗拉强度呈现出了先增大后减小的趋势,最大值217N/mm2出现在压射速度为4m/s时.  相似文献   

19.
采用挤压铸造成形工艺制备AZ91D镁合金,研究了不同压力(40、80、120 MPa)和浇注温度(650、690、730和770℃)对合金组织与性能的影响,优化出高性能挤压镁合金的工艺参数。结果表明,相同浇注温度下,随着挤压压力的增大,第二相体积分数呈现略微逐渐减少的趋势,在晶界上出现的共晶组织分布越来越不连续,α-Mg相晶粒尺寸逐渐减小;相同挤压压力下,合金的晶粒尺寸随着浇注温度的升高逐渐长大。在730℃浇注温度、80 MPa挤压压力下获得的挤压铸件综合力学性能最好,其致密度达到最高,为99.78%,较原材料提高1.4%;抗拉强度由121.2 MPa提高到219.5 MPa,提高了81.1%;伸长率由1.6%提高到6.4%,提高了300%。  相似文献   

20.
采用正交试验,研究了压铸温度、模具温度和压射速度等工艺参数对高强耐热压铸AZ91-0.5Nd-0.3Y-0.3La合金显微组织与力学性能的影响。结果表明,压铸工艺参数对合金力学性能的影响由大到小依次为:压铸温度、模具温度和压射速度。最佳压铸工艺方案:压铸温度为685℃,模具温度为240℃,压射速度为4.0m/s。在此压铸工艺参数下,合金的抗拉强度、屈服强度、伸长率分别达到292 MPa、186 MPa、9.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号