首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
运用光滑粒子流体动力学(smoothed particles hydrodynamics,SPH)法建立了激光熔凝过程的数值模型。并应用该模型对AISI304不锈钢的激光熔凝过程进行数值模拟,分析在不同激光功率和扫描速度下对熔池速度场、温度场及其宽度和深度的影响。结果表明:熔池的最高温度相对激光光斑中心偏移一定的距离,且偏移距离随扫描速度的增加而增大,但随激光功率的增加则保持不变。同时也为研究激光熔覆的自由表面形貌的形成过程提供SPH理论基础和数值分析方法。  相似文献   

2.
庞铭  谭雯丹 《表面技术》2019,48(8):296-301
目的 为了突破激光熔凝蠕墨铸铁RuT300气门座裂纹抑制技术的瓶颈,研究了预热温度对激光熔凝RuT300气门座残余应力场的影响,从而为工程上抑制裂纹的参数优选提供支撑。方法 基于热弹塑性理论,建立了激光熔凝RuT300气门座残余应力场分析的数学物理模型,模型中考虑了预热温度、激光熔凝参数、材料性能参数的变化对残余应力的影响。结果 预热温度对激光熔凝RuT300气门座残余应力场的影响与熔池冷却速度、峰值温度等密切相关:当预热温度在25~150 ℃时,随着预热温度的升高,冷却速度下降对激光熔凝RuT300气门座热膨胀变形引起的应力降低起主要作用,导致气门座环向残余应力值随预热温度的升高而减小;当预热温度在150~250 ℃时,随着预热温度的升高,峰值温度上升诱发的热膨胀变形加剧所引起的应力增加起主要作用,导致气门座环向残余应力值随预热温度的升高而增大。结论 预热温度的变化影响气门座的冷却速度和峰值温度,而残余应力值的变化是气门座冷却速度和峰值温度等综合影响的结果,通过合理的调控预热温度,可以使激光熔凝RuT300气门座的残余应力值降低到最低,从而减小气门座激光熔凝形成裂纹的倾向。  相似文献   

3.
建立了激光熔凝镁合金有限元模型,模型中考虑了镁合金热物性参数的非线性、相变潜热和熔化潜热,分析了激光熔凝镁合金温度和熔池形态的变化规律。结果表明:由于激光熔凝过程前面对后面的预热作用等,激光熔凝镁合金的等温线呈非对称性分布,且伴随激光熔凝过程的进行,熔池的纵截面形貌由月牙形变化到半泪滴形;由于镁合金试样长度、宽度方向总的传热热阻的差异,激光熔凝镁合金正面形貌为椭圆形;因为熔池前端和熔池后端接触试样的温度差异,熔池前段比熔池后端等温线密集;由于熔池边缘通过热扩散消耗的能量大等的影响,当激光的功率不能保证辐照区域都熔化的条件下,伴随激光光斑半径的增加,激光熔凝镁合金的正面熔池面积减小。  相似文献   

4.
通过数值模拟研究了直径为180mm的TiAl合金铸锭的真空自耗冶炼过程,获得了TiAl合金真空自耗熔炼过程中熔炼温度、熔炼速度和冷却能力对金属熔池温度梯度、熔池形状和糊状区宽度的影响规律。结果表明,随熔炼温度升高,熔池深度增加,其形状由碗状向V形转变,熔炼温度对熔池中温度梯度和凝固前沿糊状区宽度影响较小;随熔炼速度增加,熔池中温度梯度显著减小,糊状区宽度和熔池深度则明显降低;随冷却能力增加,糊状区宽度明显减小,熔池中温度梯度和熔池深度略有减小。  相似文献   

5.
利用ANSYS有限元仿真模拟软件,建立了激光熔凝强化RuT300三维数学物理仿真模型。模型中考虑了材料的相变潜热、热物性参数及激光吸收率的影响,分析了激光熔凝收尾过程中激光功率线性下降及下降速率、激光扫描速度线性上升及上升斜率对熔池形状的影响规律。结果表明:随着激光功率的线性下降或激光扫描速度的线性上升,熔池的面积、深度及宽度均降低;伴随激光功率线性下降斜率绝对值的增大或激光扫描速度线性上升斜率的增大,熔池的面积、深度及宽度均降低。  相似文献   

6.
热源模型及参数选取是激光焊接热过程模拟的关键。采用MSC. Marc软件,基于高斯面-圆柱体组合热源模型研究了热源功率分配比、模型参数对Nimonic263合金薄板激光焊熔池尺寸和温度场的影响,并结合焊接实验结果确定了最佳热源功率分配比和模型参数。结果表明:熔池上宽随面-体热源功率分配比增大而增大,随面热源半径增大而减小,熔池下宽随体热源半径增大而减小;熔深随面-体热源功率分配比增大而减小,当体热源深度大于板厚时,熔池均贯穿板厚;最高温度和热影响区范围均随面-体热源功率分配比的增加先增加后减小。当面-体热源功率分配比为3:7时,所得熔池尺寸与实际焊缝尺寸吻合良好,其结果优于面-双椭球体组合热源模型的计算结果。  相似文献   

7.
使用有限元软件Ansys模拟Al Si10Mg激光选区熔化过程的温度场。考虑材料的热物性参数及激光能量吸收率随温度变化的特性,将激光热源视为三维高斯体热源,实现在粉床上的移动加载,实时进行材料由粉末态转化为实体态的单元属性转变,研究激光功率、扫描速度及扫描间距对粉床热行为的影响。结果表明:熔池最高温度、熔池尺寸及冷却速度随激光功率的增大逐渐增大;熔池最高温度与熔池尺寸随扫描速度的增大逐渐减小,熔池冷却速度随扫描速度的增大逐渐增大;扫描间距对熔池的最高温度、冷却速度及熔池尺寸影响不大,但扫描间距过大容易形成孔洞缺陷。  相似文献   

8.
采用3 kW固体光纤激光器在蠕墨铸铁基体上进行了激光熔凝淬火试验,分析了淬火带的裂纹率、熔凝区形貌、显微硬度和组织.结果表明,当保护气体流量一定时,提高激光功率或降低扫描速率有利于降低激光熔凝淬火带的裂纹率;而激光功率一定时,不同的扫描速率对应的最佳保护气体流量大小不同.随着激光功率的增加,淬火带形貌会向基体扩展,扩展规律是先主要沿熔凝区宽度和深度方向扩展,然后沿其它方向扩展,到一定程度后,又沿着宽度和深度方向扩展,如此循环,熔凝区总面积不断增加,淬火带形貌也由扁平状逐步变化为帽子状.  相似文献   

9.
《铸造》2015,(10)
采用IPG的YLS-3000型光纤激光器对Cr12Mo V钢表面进行原位激光-渗氮处理。通过光镜、扫描电镜、X射线衍射及金相显微硬度计,分析研究不同激光处理参数对渗氮层组织及性能的影响。结果表明,在扫描速度和离焦量一定的条件下,Cr12Mo V激光熔凝层深度随激光功率的增加而增大,激光渗氮处理可使材料表面显微硬度提高。Cr12Mo V钢激光渗氮后的组织由熔凝区、热影响区及基体三部分组成。随着激光熔凝速度的增大,熔凝区树枝晶逐渐变得细小。随着激光熔凝功率的增加,熔凝区树枝晶逐渐变得粗大。熔凝层的硬度峰值出现在距材料表面1.0 mm附近,两侧呈对称降低,硬度峰值则随激光功率的增加而增加。  相似文献   

10.
通过数值模拟根据熔池热行为变化规律对选区激光熔化工艺参数进行优化,是提高成形件质量的有效手段。为此,本论文采用ANSYS的APDL语言建立了全参数化的IN738LC合金选区激光熔化过程温度场有限元分析模型,并通过单熔道成形实验对热源模型进行校核。结果表明:随着激光功率的增加或者扫描速度的减小,粉末吸收的线性能量密度不断增加,熔池中心最高温度升高,熔融金属量增加,熔道形态由不规则断续状向规则连续长条状演化;随着扫描速度的增加或者激光功率的减小,粉末吸收的线性能量密度不断下降,熔体流动能力减弱,熔池宽度与熔化穿透深度也随之减小;有限元模拟与实验结果吻合较好,当激光功率为270 W,扫描速度为1150 mm/s时,单熔道具有连续少缺陷、规则良好的成形形貌。  相似文献   

11.
庞铭  张啸寒 《表面技术》2019,48(10):131-138
目的 突破气门座激光熔凝收尾凹坑缺陷技术瓶颈。方法 建立激光熔凝强化RuT300的三维瞬态温度场仿真模型,模型中考虑激光吸收率、材料相变潜热及热物性参数的影响,并结合Niyama判据,分析激光熔凝强化RuT300收尾过程激光参数线性变化对收尾凹坑缺陷的影响规律。结果 在激光熔凝收尾过程中,对比未采用激光参数线性变化的收尾方式,采用激光功率线性下降(斜率为–400)的参数变化方式时, 的最大值由最初的0.0085增大至0.0097;当斜率由–100减小至–400时, 的最大值由最初的0.0087增大至0.0097;采用激光扫描速度线性上升(斜率为20)的参数变化方式时, 的最大值由最初的0.0087增大至0.0142;当斜率由5增加至20时, 的最大值由最初的0.0112增大至0.0142。伴随着激光功率线性下降或激光扫描速度线性上升,激光熔凝气门座收尾凹坑有缩减趋势,且伴随着激光功率线性下降过程斜率绝对值或激光扫描速度线性上升过程斜率的增大,收尾凹坑有进一步缩减趋势。实验分析与数值模拟结果基本吻合,说明了模型的有效性。结论 在激光熔凝收尾过程中,采用激光功率线性下降或者激光扫描速度线性上升方法可以抑制收尾的凹坑缺陷,提升气门座的可靠性。  相似文献   

12.
为提高激光选区熔化WC 12Co硬质复合材料的成形质量,采用有限元仿真软件Ansys 2021R1对SLM成形WC 12Co硬质复合材料过程的温度场进行数值模拟仿真研究,研究成形温度场的温度分布和成形工艺参数(激光功率、扫描速度、扫描间距和基板预热温度)对温度场的影响,为优化WC 12Co硬质复合材料成形提供试验依据。结果表明:激光功率增大,成形区域温度增大,位置点3的峰值温度从3507.47℃增大至3837.52℃;激光扫描速度增大,成形区域温度降低,位置点5的峰值温度从3592℃下降至2897℃,峰值温度下降695℃;扫描间距的增加使各扫描区域的温度有所降低,位置点3的峰值温度从3330℃逐渐降低至3123℃。在同一成形工艺参数下,激光扫描前一路径对后一路径有预热作用,随着扫描路径的增加,成形区域的温度呈现逐渐上升趋势。基板预热至120℃能够提高熔池的内部温度,减小成形件之间的温度差异,缩小温度梯度差。当激光功率增大时,熔池的宽度和深度随之增大;当激光扫描速度增大时,熔池的宽度先增大后减小,熔池的深度线性反向减小;当扫描间距增大时,熔池的宽度和深度均减小。模拟获得的温度场仿真结论能够大致反映成形试样的表面质量和合金粉末的熔化状态随成形工艺参数变化的趋势。  相似文献   

13.
为了研究电磁搅拌作用对激光熔凝熔池凝固过程的影响,采用有限体积法对施加磁场前后激光单道动态熔凝TA15钛合金过程进行三维磁-热耦合数值模拟。研究了磁场对激光熔池流场、熔凝单道及其周边基材温度分布、固液界面处温度梯度和凝固速度的影响,并采用试验手段对模拟结果进行了验证。模拟结果表明:电磁搅拌作用使激光熔池最大流速增加了约20%,对流加剧促进了熔池热交换作用,使其最高温度下降,固液分界面处温度梯度大幅降低,凝固速度小幅增大,从而有利于熔池顶部组织发生柱状晶-等轴晶转变(CET)。试验结果显示施加磁场后熔凝层顶部有等轴晶组织生成,且随着远离磁场中心,电磁力增大,等轴晶区有扩大趋势。试验结果和模拟结果一致性较好。  相似文献   

14.
扫描电子束铝合金表面处理温度场分析与实验验证   总被引:1,自引:1,他引:0  
根据扫描电子束焊机的实际工作环境,建立了扫描电子束铝合金表面处理温度场三维有限元分析模型,分析了试样经电子束照射后表面熔池的形态及组织变化,分析过程中,考虑了试样表面的热辐射和材料的相变,并用实验验证了仿真结果.讨论了束流、束斑直径和扫描半径对扫描电子束表面处理温度场的影响.结果表明:在其它参数不变的情况下,随着束流的增大,试样表面的最高温度基本上呈线性增高,熔池的宽度和深度也有所增大;随着束斑直径的增加,试样表面的最高温度呈线性下降,熔池的深度也略有减小,而宽度则快速地增大;随着扫描半径的增加,最高温度、熔池的宽度和深度均急剧下降.  相似文献   

15.
基于ANSYS数值模拟平台,建立了三维瞬态激光堆焊40Cr钢温度场有限元模型,利用APDL参数设计语言实现热源的移动,对40Cr钢表面激光相变硬化处理过程的温度场进行模拟,得出熔池温度随时间的变化规律,并对比了不同功率和不同扫描速度对温度场的影响。结果表明:随热源的移动,温度场呈现彗星状云图,且激光光斑前缘温度梯度大,后部温度梯度小;不同功率对比结果表明,在相同的激光扫描速度6 mm/s时,表面温度最大值随激光功率增大而升高,在900 W时达到4238℃;不同速度对比结果表明,在相同功率800 W时,表面温度最大值随激光速度增大而减小,在6 mm/s时达到3738℃。  相似文献   

16.
为了研究激光沉积成形对TC4钛合金组织和质量的影响,进行了基于单点熔覆沉积成形熔池凝固试验。对激光熔池的形貌和微观组织进行了研究,并对微观组织进行了成分偏析和显微硬度的检测。结果表明,熔凝组织呈典型的快速凝固现象,不存在微观组织元素偏析,晶粒主要由柱状晶组成,随功率增大,有向等轴晶转化趋势;较高的激光功率或较长扫描时间是形成良好成形组织的基础,晶粒生长大小受温度影响较大,生长方向则由温度梯度影响;熔凝组织硬度高于基体,而随功率或扫描时间增加,熔凝组织硬度减小。  相似文献   

17.
熔池作为所有熔焊工艺的最主要研究对象,其特征决定了最终焊缝成形质量.利用高速摄像系统对焊接过程中的熔池进行实时监测,可获得熔池在任意时刻的热图像.通过对TA15钛合金激光焊接熔池热图像进行分析计算,得到熔池的一系列特征量(主要有熔池宽度和熔池长度),重点分析了激光焊接热输入(单位厚度焊接线能量)与熔池特征量间的关系以及温度场的特点.结果表明,熔池长度和熔池宽度都随焊接热输入的增加而增加,并基本呈线性增长;焊接速度减小时,熔池宽度和熔池长度都随之增大,并且熔池长度增大得更快;激光功率减小时,熔池宽度和熔池长度随之减小.熔池内部温度分布较不均匀,尤其是过热液态区域.  相似文献   

18.
对45钢进行激光熔凝加工,研究了激光处理后的组织结构及显微硬度,并探讨了它的影响因素。结果表明:激光熔凝组织由表层熔凝区、完全淬火区、不完全淬火区和热影响区组成;完全淬火区的显微硬度最高。除表面熔凝区薄层外,随距表面深度的增加,该组织的显微硬度逐渐减小。  相似文献   

19.
计算了GH536高温合金选区激光熔化(SLM)过程中熔池区域的温度场变化和凝固后残余应力分布。计算采用复合Gauss热源研究激光光学穿透深度的影响规律,通过研究材料属性随温度的变化关系实现粉层、熔池及固态金属的转化。实验结果表明,Gauss热源模型能够较好地模拟SLM过程中的温度场分布以及凝固后的残余应力。模拟结果显示,随着激光功率的增大,熔池宽度、深度和长度均相应增大,凝固速率减小;随着扫描速率增大,熔池宽度和深度减小,长度不变,凝固速率增大。计算结果表明,单层选区激光熔化的零件表面存在较大的拉应力,随着深度增大,拉应力迅速减小转为压应力。  相似文献   

20.
为了防止蠕墨铸铁气门座激光相变硬化缺陷的形成,通过对其热力耦合场进行数值模拟,探究激光功率的变化对气门座温度场和残余应力场的影响,并在模型中考虑了相变潜热和材料性能参数随温度的变化。结果表明:激光相变硬化是一个快速加热和冷却的过程,能够针对材料局部和表面进行硬化和强化;激光功率增加可以提高气门座的峰值温度;气门座截面的温度和周向残余拉应力均呈月牙形分布,峰值均出现在硬化层表面区域;伴随激光功率的增加,相变硬化区域的周向残余拉应力呈上升趋势。基于模拟结果,得到了气门座在不同激光功率下热力耦合场的分布规律,为优化激光参数提供了指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号