首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
采用氩气保护条件下无压浸渗工艺,在活性元素Ti的诱导下成功制备了SiC陶瓷/高铬铸铁复合材料,并采用SEM、XRD、EDS等方法进行试验分析。结果表明:SiC颗粒均匀分布在高铬铸铁基体中,两者界面结合良好。复合材料中检测到TiC、TiO、FeO等新相,其中TiC为主要生成物,与SiC颗粒及金属基体均形成紧密结合界面,是高铬铸铁浸渗SiC预制体的关键因素。随着Ti含量增加,高铬铸铁在预制体中的浸渗深度增加。Si元素与Ti的结合能力较弱而向金属基体的扩散较明显; Ti元素易团聚,扩散很微弱,扩散的C元素与Ti元素结合的倾向性较强,生成TiC;Cr元素向SiC颗粒的扩散明显。  相似文献   

2.
以高铬铸铁为金属基体,添加Ti粉的ZTA陶瓷颗粒为增强体,采用无压浸渗方法制备了ZTA陶瓷/高铬铸铁复合材料。采用SEM、EDS、XRD等试验方法分析了该复合材料的成分分布和组织结构。结果表明,高铬铸铁熔体能够浸渗到Ti含量为5%的ZTA预制体中,并在复合材料中均匀分布;预制体中的Ti颗粒与合金中的Cr元素对浸渗有促进作用;高铬铸铁合金与陶瓷结合界面处存在FeAl_2O_4、FeTiO_5和AlCrO_3相。  相似文献   

3.
Ti对C/Cu复合材料界面润湿及浸渗组织的影响   总被引:1,自引:1,他引:0  
采用含Ti的铜合金及无压反应浸渗工艺制备C/Cu复合材料,利用XRD,SEM和EDS等检测手段分析研究试样的显微组织,讨论浸渗过程中的界面反应。结果表明:在铜基体中加入强碳化物形成元素Ti,可提高铜及铜合金与碳的自发润湿性,使无压浸渗工艺制备C/Cu复合材料成为可能;复合材料中的主相为Cu、C和TiC,TiC以溶解析出的形式形成于碳纤维周围,合金中的Ti含量决定复合材料中TiC的含量,适量Tj可降低系统的润湿角并有利于浸渗进行,但Ti过量将对纤维造成损伤,使复合材料中碳纤维的体积分数下降。  相似文献   

4.
采用原位反应无压浸渗工艺,制备了Si C/Al双连续相复合材料,研究烧结温度对Si C/Al双连续相复合材料的导热性能的影响,观察Si C/Al双连续相复合材料的表面形貌。结果表明:Al合金熔体在无压下能渗入三维网状Si C多孔陶瓷孔隙,形成组织均匀具有网络贯穿结构的Si C/Al双连续相复合材料。浸渗温度对复合材料的导热系数影响很大,当浸渗温度为900、1000、1100和1200℃时,复合材料室温下的导热系数分别为167.4、160、154和152 W/(m·K),与浸渗温度900℃相比,浸渗温度1200℃复合材料室温下的导热系数下降了9%。因此,在保证浸渗完全的情况下,随着浸渗温度的升高,复合材料的导热性能越来越差,这主要是由于高温下熔融Al液与Si C陶瓷之间发生界面反应所致;适当地降低熔渗温度可以减缓界面反应的程度,从而提高复合材料的导热性能。本实验的最佳工艺条件为N2气氛,900℃保温3 h。  相似文献   

5.
分别在ZTA颗粒表面镀Ni和包覆Cr粉,采用负压铸渗法制备了ZTA陶瓷颗粒增强高铬铸铁基陶瓷复合材料。采用SEM、EDS、XRD等方法分析复合材料的组织结构、元素分布以及物相组成,探讨其对铸渗效果和界面结合的影响。结果表明,负压铸渗条件下,复合材料界面存在过渡区。过渡区以Si、Na为主,存在Al的扩散聚集,并且含有Fe、Cr、Ni、C、O等元素。元素的扩散有利于改善陶瓷界面润湿性,促进界面浸渗和结合。陶瓷颗粒镀Ni条件下,过渡层形成CrNiFe、NiSi_3P_4、Fe_2Al_5、Na_2NiFeF_7、NaAlSiO_4、Zr_3NiO等多种化合物,陶瓷包覆Cr的复合材料过渡层形成Cr_3O_4、AlCrFe_2、Na_6Al_4Si_4O_(17)等化合物,这些化合物可以改善陶瓷润湿性,提高铸渗效果,促进陶瓷与高铬铸铁结合。  相似文献   

6.
浸渗法制备ZTA陶瓷颗粒增强铁基复合材料的研究取得了很大进展。针对陶瓷预制体制备,铁水对陶瓷预制体的浸渗,陶瓷与铁水的润湿性,复合材料界面结合,复合材料耐磨性等方面的研究进行了论述。解决铁水对预制体的润湿性是实现浸渗的先决条件,常用的方法有在陶瓷预制体中添加活性元素,通过化学镀、气相沉积以及包覆等方法对陶瓷表面进行改性等;在陶瓷与金属基体间形成过渡层可以改善结合界面的组织结构,促进陶瓷与金属基体形成冶金结合;铁水对陶瓷预制体的浸渗机理,以及ZTA陶瓷复合材料的耐磨机理尚需要深入研究。  相似文献   

7.
研究了一种Ni诱导无压浸渗法制备陶瓷基复合材料的方法:通过粉末冶金法制备出含Ni颗粒的Ni/Al2O3复相陶瓷预制体,真空状态下,在1600℃以不锈钢熔体无压浸渗该Ni/Al2O3预制体,获得了不锈钢浸渗增强的Al2O3陶瓷基复合材料。采用SEM观察了结合界面的微观形貌,用EDS分析了结合界面附近元素含量的变化,用XRD分析了界面反应产物,以抗拉试验测试了钢与复相陶瓷体的界面结合强度。结果表明,钢熔体可浸渗到陶瓷体内部并与Ni互溶形成新的Ni-Fe合金;不锈钢与复相陶瓷的结合界面存在界面反应;界面结合强度的最大值可达到67.5MPa。  相似文献   

8.
高性能SiC增强Al基复合材料的显微组织和热性能   总被引:1,自引:0,他引:1  
采用模压成型和无压浸渗工艺制备了高体积分数SiC增强Al基复合材料(AlSiC),对其物相和显微结构进行研究。结果表明:用上述方法制备的AlSiC复合材料组织致密,两种粒径的SiC颗粒均匀分布于Al基质中,界面结合强度高;SiC增强颗粒与Al基质界面反应控制良好,未出现Al4C3等脆性相。分析指出:Al合金中Si元素的存在有利于防止脆性相Al4C3的形成,Mg元素的加入提高了Al基体和SiC增强体之间的润湿性。所获得复合材料的平均热膨胀系数为9.31×10 6K 1,热导率为238 W/(m.K),密度为2.97 g/cm3,表现出了良好的性能,完全满足高性能电子封装材料的要求。  相似文献   

9.
采用3D打印制备SiC陶瓷预制体,用压力浸渗工艺制备SiC增强A356基复合材料(SiC/A356复合材料),采用光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)及X射线衍射仪(X-ray)等对其物相、组织形貌等进行研究。结果表明,用该方法制备的SiC/A356复合材料组织致密,颗粒分布均匀,颗粒与基体的界面结合性能较好;SiC增强与A356基体界面反应控制良好,未检测到Al_4C_3脆性相生成,表明A356合金中的Si有利于防止脆性相Al4C3的形成,Mg元素的存在提高了A356基体和SiCp增强体之间的润湿性。  相似文献   

10.
采用小颗粒TiC包覆SiC陶瓷颗粒,在惰性气体保护下选用无压浸渗方法制备了高铬铸铁/TiC-SiC复合材料;利用SEM/EDX观察和分析了液态铸铁在SiC预制体中的浸渗情况、组织特征和成分分布;结合高铬铸铁/Ti-SiC复合材料的组织特点和浸渗行为特点,分析了TiC粉体对浸渗行为和复合材料组织的影响。观察结果表明,当TiC加入量≤10%(质量分数,下同)时,Fe/Cr合金无法润湿SiC颗粒,而当加入量≥20%时,Fe/Cr合金和预制体之间润湿性得到改善,增加TiC含量更有利于Fe/Cr合金浸渗;基体中大尺寸SiC颗粒消失,出现了尺寸接近毫米级的条状单质碳,这与高铬铸铁/Ti-SiC复合材料的组织差异较大。对比两种复合材料组织发现,添加Ti粉末在金属液中可与C结合生成TiC,而添加的TiC颗粒在组织中呈鹅卵石状,边缘圆润,出现金属液与陶瓷颗粒之间的互溶。在浸渗过程中,添加TiC和Ti与浸渗金属发生的反应不同,且高质量分数的TiC对金属液浸渗过程有明显的促进作用。  相似文献   

11.
采用负压铸渗工艺研制具有颗粒增强耐磨复合层的高铬铸铁基复合材料,分别通过XRD、EDX等分析手段研究了复合材料界面的成分特点和物相组成。WC-TiC-Co增强颗粒均匀分布于复合层中,且基体与增强颗粒界面为冶金结合。由于增强颗粒的部分溶解以及W、C、Ti、Co、Fe、Cr等元素的互扩散,在复合材料界面区域形成了含有Fe、W、Co等元素的多种化合物。考察了所研制复合材料的耐磨性。  相似文献   

12.
通过SiC/Ti6Al4V钛基复合材料的制备及在不同条件下的热处理试验,利用SEM,EDS及XRD分析技术研究复合材料界面反应产物相的形成及反应元素的扩散路径。结果表明:反应元素如C,Ti,Si在界面反应层中出现浓度波动,合金元素Al并没有显著扩散进入界面反应产物层,而是在界面反应前沿堆积,其界面反应产物被确认为Ti3SiC2,TiCx,Ti5Si3C,和Ti3Si;在界面反应初期,存在着TiC+Ti5Si3Cx双相区,当形成各界面反应产物单相区时,SiC/Ti6Al4V复合材料界面反应扩散的完整路径应为:SiC | Ti3SiC2 | Ti5Si3Cx | TiCx | Ti3Si| Ti6Al4V+TiCx;界面反应产物层的生长受扩散控制,遵循抛物线生长规律,其生长激活能Q^k及k0分别为290.935 kJ·mol^-1,2.49× 10^-2 m·s^-1/2.  相似文献   

13.
采用Ag Cu Ti活性钎料对Invar合金和Si3N4陶瓷进行钎焊连接,研究了接头界面组织及其形成机制,分析了钎焊工艺参数对接头界面结构和性能的影响。结果表明,钎焊过程中液态钎料中的活性元素Ti与Si3N4陶瓷发生反应,在陶瓷界面形成致密的Ti N和Ti5Si3反应层;同时,Invar合金向液态钎料中溶解,与活性元素Ti反应生成脆性的Fe2Ti和Ni3Ti化合物。钎焊温度和保温时间影响Si3N4陶瓷界面反应层的厚度以及接头中Fe2Ti和Ni3Ti脆性化合物的形成量和分布,这两方面共同决定着接头的抗剪强度。当钎焊温度为870℃,保温15 min时,接头的平均抗剪强度最大值达到92.8 MPa,此时接头的断裂形式呈现沿Si3N4陶瓷基体和界面反应层的复合断裂模式。  相似文献   

14.
采用底部真空无压浸渗新工艺制备了β-SiCp/Al复合材料。SiC预制体在1373 K高温氧化及被熔融铝浸渗时加入Si、Mg合金元素。通过金相显微镜及SEM表征了复合材料的表面和断口形貌。结果表明,SiC颗粒在基体铝中分布均匀,SiC预制体浸渗完全。XRD分析表明,复合材料中的主晶相为SiC和Al,存在Mg2Si,MgAl2O4界面产物,没有出现Al4C3脆性相。复合材料的力学性能研究表明,复合材料的磨损机制为磨粒磨损和黏着磨损;随着SiC体积分数的增加,复合材料的磨损率下降,硬度上升。  相似文献   

15.
采用底部真空无压浸渗新工艺制备了β-SiCp/Al复合材料。SiC预制体在1373 K高温氧化及被熔融铝浸渗时加入Si、Mg合金元素。通过金相显微镜及SEM表征了复合材料的表面和断口形貌。结果表明,SiC颗粒在基体铝中分布均匀,SiC预制体浸渗完全。XRD分析表明,复合材料中的主晶相为SiC和Al,存在Mg2Si,MgAl2O4界面产物,没有出现Al4C3脆性相。复合材料的力学性能研究表明,复合材料的磨损机制为磨粒磨损和黏着磨损;随着SiC体积分数的增加,复合材料的磨损率下降,硬度上升。  相似文献   

16.
在基体中添加少量活性Ti,采用无压浸渗工艺制备碳纤维细编穿刺织物/铜复合材料(C/Cu),并利用XRD、SEM和EDS等检测手段对复合材料的微观组织和界面特性进行研究,并对复合材料的热导率进行测定。结果表明,在铜基体中加入有助于强碳化物形成的Ti,可有效提高铜及铜合金与碳的自发润湿性,实现了采用无压浸渗工艺制备C/Cu复合材料;随温度的升高复合材料热导率增加;当Ti含量在3%~5%时,复合材料热导率随Ti含量的增加而增大;当Ti含量超过5%时,复合材料热导率随Ti含量的增加而降低,说明Ti含量对复合材料热导率有显著影响。  相似文献   

17.
采用"中断浸渗"方法获得保留了"浸渗前沿"的样品,应用扫描电子显微镜和X射线能谱分析了浸渗界面上的形貌和成分变化,深入讨论了浸渗界面推进过程中的物理、化学反应过程.采用扫描电镜等微观分析手段观察了复合材料显微形貌,探讨了界面反应机理.研究结果表明:浸渗界面推进过程中熔体中的Mg富集在浸渗前沿的预制体上,并与预制体发生反应;Al/Si3N4界面反应产物AlN相形成"楔形"向Si3N4单元心部推进,细观上呈现含毛细通道的胞状辐射形貌,大量毛细通道确保了Al和Si3N4之间的置换反应持续进行;Al与Si3N4的置换反应产物Si绝大部分溶解在铝镁合金熔体中.  相似文献   

18.
采用“中断浸渗”方法获得保留了“浸渗前沿”的样品,应用扫描电子显微镜和X射线能谱分析了浸渗界面上的形貌和成分变化,深入讨论了浸渗界面推进过程中的物理、化学反应过程。采用扫描电镜等微观分析手段观察了复合材料显微形貌,探讨了界面反应机理。研究结果表明:浸渗界面推进过程中熔体中的Mg富集在浸渗前沿的预制体上,并与预制体发生反应;Al/Si3N4界面反应产物AlN相形成“楔形”向Si3N4单元心部推进,细观上呈现含毛细通道的胞状辐射形貌,大量毛细通道确保了Al和Si3N4之间的置换反应持续进行:Al与Si3N4的置换反应产物Si绝大部分溶解在铝镁合金熔体中。  相似文献   

19.
运用量子化学计算理论,求出了有关化合物的热化学参数,并根据有关热力学模型,计算了金属间化合物Ti2AlNb中元素的活度,由此计算了SCS-6 SiC长纤维增强Ti2AlNb金属间化合物复合材料界面反应的Gibbs函数变值△rG,用△rG判据推测了界面反应产物并与透射电镜实验结果进行了对比分析。研究表明,由于Ti2AlNb中原子结合力较Ti3Al强,因而SCS-6 SiC/Ti2AlNb复合材料的界面反应较SCS-6 SiC/Ti3Al轻。反应初期形成晶粒非常细上的TiC,Ti5Si3,晶粒较大的TiC和Ti3Si是由于元素扩散和反应所形成。在对复合材料的热暴露中,这些反应产物均进一步长大,并由于反应Ti3Al C→Ti3AlC,在Ti2AlNb基体中形成一些三元反应产物Ti3AlC晶粒。  相似文献   

20.
ZTA颗粒增强高铬铸铁基复合材料界面研究   总被引:1,自引:0,他引:1  
以自制Fe-Ti金属粘结剂和ZTA(氧化锆增韧氧化铝)陶瓷颗粒为原料,采用粉末冶金工艺制备多孔陶瓷预制体,并浇注高铬铸铁制备ZTA颗粒增强高铬铸铁基复合材料。使用OM、SEM、XRD等分析手段研究预制体和复合材料的复合界面行为。结果表明,Ti含量15%的粘结剂/ZTA复合界面结合优于Ti含量10%的粘结剂/ZTA复合界面。烧结过程中Ti、O、Zr元素扩散到复合界面微区反应形成致密、连续的Ti O_x过渡层,实现ZTA活化包覆。粘结剂与ZTA结合机制为机械结合与反应冶金结合。Ti含量15%的粘结剂制备的预制体具有一定强度和抗热冲击性能,在高铬铸铁液铸渗情况下能保持结构和尺寸,基体与ZTA结合界面致密,无空隙、孔洞缺陷,Ti O_x过渡层分布于界面处起到活化、改善界面结合的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号