首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was undertaken to examine the effects of diminished extracellular sodium concentration on the vascular action of arginine vasopressin (AVP) in cultured rat vascular smooth muscle cells (VSMC). The preincubation of cells with the 110 mM extracellular Na+ ([Na+]e) solution supplemented with 30 mM choline chloride for 60 minutes enhanced the effect of AVP- (1 x 10(-8) M) induced VSMC contraction. The treatment of 110 mM [Na+]e solution also enhanced the cellular contractile response to the protein kinase C (PKC) activators, phorbol 12-myristate 13-acetate and 1-oleoyl-2-acetyl-glycerol. Furthermore, preincubation with the 110 mM [Na+]e solution also potentiated the effect of 1 x 10(-8) M AVP, but not 1 x 10(-6) M, to increase the cytosolic-free Ca2+ ([Ca2+]i) concentration. The 110 mM [Na+]e media decreased the basal intracellular Na+ concentration and increased intracellular 45Ca2+ accumulation, basal [Ca2+]i and AVP-produced 45Ca2+ efflux. These effects of 110 mM [Na+]e solution to enhance the vascular action of AVP were abolished by using Ca(2+)-free 110 mM [Na+]e solution during the preincubation period. The preincubation with the 110 mM [Na+]e solution did not change either the Kd and Bmax of AVP V1 receptor of VSMC or the AVP-induced production of inositol 1,4,5-trisphosphate. The present in vitro results therefore indicate that the diminished extracellular fluid sodium concentration within a range observed in clinical hyponatremic states enhances the vascular action of AVP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effect of endothelins (ET-1 and ET-3) on 86Rb+ uptake as a measure of K+ uptake was investigated in cultured rat brain capillary endothelium. ET-1 or ET-3 dose-dependently enhanced K+ uptake (EC50 = 0.60 +/- 0.15 and 21.5 +/- 4.1 nM, respectively), which was inhibited by the selective ETA receptor antagonist BQ 123 (cyclo-D-Trp-D-Asp-Pro-D-Val-Leu). Neither the selective ETB agonists IRL 1620 [N-succinyl-(Glu9,-Ala11,15)-ET-1] and sarafotoxin S6c, nor the ETB receptor antagonist IRL 1038 [(Cys11,Cys15)-ET-1] had any effect on K+ uptake. Ouabain (inhibitor of Na+,K(+)-ATPase) and bumetanide (inhibitor of Na(+)-K(+)-Cl- cotransport) reduced (up to 40% and up to 70%, respectively) the ET-1-stimulated K+ uptake. Complete inhibition was seen with both agents. Phorbol 12-myristate 13-acetate (PMA), activator of protein kinase C (PKC), stimulated Na+,K(+)-ATPase and Na(+)-K(+)-Cl- cotransport. ET-1- but not PMA-stimulated K+ uptake was inhibited by 5-(N-ethyl-N-isopropyl)amiloride (inhibitor of Na+/H+ exchange system), suggesting a linkage of Na+/H+ exchange with ET-1-stimulated Na+,K(+)-ATPase and Na(+)-K(+)-Cl- cotransport activity that is not mediated by PKC.  相似文献   

3.
Endothelin (ET) isopeptides, ET-1, ET-2 and ET-3, elicit a positive inotropic effect (PIE) in association with a negative lusitropic effect, essentially with identical efficacies and potencies in the isolated rabbit papillary muscle, but with different concentration-dependent properties. Pharmacological analysis indicates that the PIE of ET-1 is mediated by an ETA2 subtype that is less sensitive to BQ-123 and FR139317, whereas the PIE of ET-3 is mediated by an ETA1 subtype that is highly sensitive to these ETA antagonists. ETs increased the amplitude of intracellular Ca2+ transient (CaT) in indo-1 loaded rabbit ventricular myocytes, but the increase was much smaller than that produced by elevation of [Ca2+]o or isoproterenol for a given extent of PIE, an indication of increased myofibrillar Ca2+ sensitivity. ETs stimulate phosphoinositide (PI) hydrolysis, which leads to production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Evidence for the role of IP3-induced Ca2+ release in cardiac E-C coupling is tenuous. Generation of IP3 induced by ET-1 was transient and returned to the baseline level when the PIE reached an elevated steady level. Protein kinase C (PKC) that is activated by DAG and also via other pathways triggered by ETs stimulates Na+-H+ exchanger to lead to an increased [Na+]i and alkalinization. The former may contribute to an increase in the amplitude of CaT through Na+-Ca2+ exchanger, and the latter, to an increase in myofibrillar Ca2+ sensitivity. A number of PKC inhibitors, such as staurosporine, H-7, calphostin C and chelerythrine, consistently and selectively inhibited the PIE of ET-3 without affecting the PIE of isoproterenol and Bay k 8644. The maximum inhibition was 20-30% of the total response. A Na+-H+ exchange inhibitor, [5-(N-ethyl-N-isopropyl) amiloride (EIPA)] or a Ca2+ antagonist, verapamil, could not completely inhibit the PIE of ET-3, but the combination of both inhibitors totally abolished the PIE of ET-3. These findings indicate that activation of PKC and subsequent activation of Na+-H+ exchanger and/or L-type Ca2+ channels may play a crucial role in the cardiac action of ET isopeptides in the rabbit ventricular myocardium.  相似文献   

4.
The effects of two different stressors, heat shock (HS; 44 degrees C, 20 min) and ethanol (1.2 M, 60 min), on ion content and membrane potential were investigated in C6 rat glioma cells. Both treatments were previously shown to induce the HS response [26]. Intracellular pH (pH(i)), sodium ion concentration ([NA+]i), potassium ion concentration ([K+]i) and membrane potential were determined by means of continuous 31P and 23Na nuclear magnetic resonance (NMR), continuous fluorescence spectroscopy and 86Rb uptake. Lactate extrusion was determined in addition with respect to pH(i) regulation. The aim of this study was a detailed picture of HS and ethanol-induced ion changes in a single cell type, because stress-induced changes in the intracellular ionic balance may be important factors for determining proliferation, stress response and apoptosis. HS lowered the pH(i) from 7.38 +/- 0.04 to about 7.05 +/- 0.04. [Na+]i decreased during HS to 50% of the control and recovered to normal level 95 min after HS treatment. During HS, [K+]i remained constant but increased after HS. The membrane potential hyperpolarized from -83 mV to -125 mV and returned to initial values during HS treatment. Lactate extrusion increased 3-fold after HS. Ethanol (1.2 M) lowered the pH(i) from pH 7.38 +/- 0.04 to pH 7.0 +/- 0.04, but in contrast to heat strongly increased [Na]i. It hyperpolarized the membrane potential from -83 to -125 mV. Ethanol also increased lactate extrusion similar to HS. Also in contrast to the effect of HS, the potassium concentration decreased during ethanol treatment. The Na(+)-H+ exchanger monensin was used to overcome the apparent inhibition of the cellular Na(+)-H+ exchanger by HS. At normal pH(e) (7.4) monensin increased [Na+]i and pH(i) considerably. A subsequent HS reduced [Na+]i only minimally. Acidification of the cells by low pH(e) (6.2) prior to HS did not abolish the HS-induced drop of pH(i), indicating that the Na(+)-H+ exchanger was also inhibited at low pH(i). At low pH(e), monensin transports H+ into the cell. A subsequent HS decreased pH(i) only little, showing the importance of inhibition of the Na(+)-H+ exchanger for the HS-induced pH(i) decrease. 100 microM amiloride reduced pH(i) and [Na+]i in a similar way as HS, but did not change pH(i) and [Na+]i much during a HS. These results indicate that some of the HS-induced ionic changes are mediated by inhibition of the Na(+)-H+ exchanger, activation of Na(+)-K(+)-ATPase and changes of membrane conductance for ions.  相似文献   

5.
Angiotensin II (Ang II) induces vascular smooth muscle cell (VSMC) growth by activating Gq-protein-coupled AT1 receptors, which leads to elevation of cytosolic Ca2+ ([Ca2+]i) and activation of protein kinase C (PKC) and mitogen-activated protein kinases. To assess the link between these Ang II-induced signaling events, we examined the effect of Ang II on the proline-rich tyrosine kinase (PYK2), previously found to be activated by a variety of stimuli that increase [Ca2+]i or activate PKC. PYK2 distribution was demonstrated in rat aortic tissue and in cultured VSMC by immunohistochemistry, revealing a cytosolic distribution distinct from smooth muscle alpha-actin, focal adhesion kinase, or paxillin. The involvement of PYK2 in Ang II signaling was measured by immunoprecipitation and immune complex kinase assays. Treatment of quiescent VSMC with Ang II resulted in a concentration- and time-dependent increase in PYK2 tyrosine phosphorylation and kinase activity in PYK2 immunoprecipitates. PYK2 phosphorylation was inhibited by AT1 receptor blockade and was attenuated by downregulation of PKC or the chelation of [Ca2+]i. Treatment with either phorbol ester or Ca2+ ionophore also increased PYK2 phosphorylation, suggesting that PKC activation and/or increased [Ca2+]i are both necessary and sufficient to activate PYK2. Activation of PYK2 by Ang II was also associated with increased PYK2-src complex formation, suggesting that PYK2 activation represents a potential link between Ang II-stimulated [Ca2+]i and PKC activation with downstream signaling events such as mitogen-activated protein kinase activation involved in the regulation of VSMC growth.  相似文献   

6.
In this experiment, intracellular K+ concentration ([K+]i) and ATPase activity of myocardiocytes were measured in early stage of burn injury. Comparing with control group, it was found that, 1. [K+]i were decreased after burn injury, [K+]i of 1st, 3rd, 8th and 24th hours were decreased to 96.2 +/- 1.3%, 85.8 +/- 1.3%, 65.9 +/- 1.0% and 73.7 +/- 1.1% of normal, respectively. 2. Cardiac sarcolemma total ATPase, Mg(2+)-ATPase and Na(+)-K(+)-ATPase activities were all reduced significantly at 8th hour after injury. These results suggest that, burn injury accelerates K+ efflux current, but inhibits K+ influx current, and the reduction of Na(+)-K(+)-ATPase activity is one reason of decrease of [K+]i after injury.  相似文献   

7.
We examined changes in expression and function of the cardiac Na+, K(+)-pump in a post-infarction rat model of hypertrophy and congestive heart failure (CHF). Myocardial infarction was induced by ligation of the left coronary artery in Wistar rats and hearts were obtained from animals with CHF and from sham operated rats after 6 weeks. In the CHF group the ratio of heart weight to body weight was 70% greater compared to sham (*P < 0.05) and all left-ventricular end-diastolic pressures (LVEDP) were above 15 mmHg. The expression of the alpha 1- and beta 1-subunits (mRNA and protein) of the Na+, K(+)-pump was not significantly different in CHF and sham. As compared to sham the alpha 2 isoform, mRNA and protein levels were lower in CHF hearts by 25 and 55%, respectively, whereas the alpha 3 isoform mRNA was greater by 120% in CHF. The alpha 3 protein was not detectable in sham but a prominent band was seen in CHF. Cell volume of isolated cardiomyocytes was 30% larger in CHF. Cardiomyocytes containing the Na+ sensitive fluorescent dye SBFI were loaded to an intracellular Na+ concentration ([Na+]i] of about 140 mM in a K(+)- and Mg(2+)-free medium (140 mM Na+, free Ca2+ of 10(-8) M). To avoid back leak of Na+ and to ensure no voltage effects on the Na+, K(+)-pump extracellular Na+ was subsequently removed, and 6 mM Mg2+ was added to the superfusate, The Na+, K(+)-pump was then reactivated by 10 mM Rb+. SBFI fluorescence ratio decreased mono-exponentially with a time constant (tau) of 191 +/- 15 s in sham (n = 8) and 320 +/- 38 s in CHF (n = 9) rats (P < 0.01). These changes in fluorescence indicate that the maximum rate of decline of [Na+]i from 100 to 35 mM was 39% (P < 0.005) slower in CHF compared to sham, whereas maximum pump rate per cell was not significantly altered (9.0 +/- 0.7 fmol/s in sham and 7.1 +/- 0.7 fmol/s in CHF cells). The [Na+]i which caused 50% pump activation (k0.5) was also not altered in CHF (40 mM in both groups). We conclude that the number of Na+, K(+)-pumps per cell was maintained in CHF but an isoform switch of the alpha 3-replacing the alpha 2-isoform occurred. However, maximum Na+, K(+)-pump rate in terms of rate of change of [Na+]i was significantly attenuated in CHF, most likely as a result of increased cell size.  相似文献   

8.
1. To investigate the contribution of ETA and ETB receptors, calcium responses to the ETB agonist, IRL-1620, to endothelin-1 (ET-1) and to the ETA antagonist, BQ-123, were examined in primary cultured unpassaged vascular smooth muscle cells (VSMC) from mesenteric vessels of 3, 9 and 17 week old spontaneously hypertensive rats (SHR), Wistar and Wistar-Kyoto (WKY) rats using Fura-2 methodology. 2. IRL-1620 (10(-7) mol/L) and ET-1 (10(-9) mol/L) increased [Ca2+]i in all strains and ages. Responses to ET-1 and IRL-1620 were blunted in 17 week SHR. BQ-123 significantly reduced ET-1-stimulated [Ca2+]i. In endothelium-denuded mesenteric vessels, ET-1 and IRL-1620 induced significant [Ca2+]i responses. 3. Binding of ET-1 was significantly lower in mesenteric artery membranes from 17 week SHR compared to controls. 4. Thus, ETA and ETB receptors are present in rat mesenteric VSMC. In adult SHR, a reduced density of ET receptors results in decreased responses to IRL-1620 and to ET-1.  相似文献   

9.
Endothelins (ETs)- and sarafotoxin (S6b)-induced rises in intracellular Ca2+ concentration ([Ca2+]i) were monitored in cultured canine tracheal smooth muscle cells by using a fluorescent Ca2+ indicator fura-2. ET-1, ET-2, ET-3 and S6b elicited an initial transient peak and followed by a sustained elevation of [Ca2+]i, with half-maximal effect (EC50) of 18, 20, 38 and 21 nM, respectively. BQ-123, an ETA receptor antagonist, had a high affinity to block the rise in [Ca2+]i response to ET-1, ET-2, and S6b, as well as a low affinity for ET-3. Removal of external Ca2+ by addition of EGTA during the sustained phase, caused a rapid decline in [Ca2+]i to the resting level. In the absence of external Ca2+, only an initial transient peak of [Ca2+]i was seen, the sustained elevation of [Ca2+]i could then be evoked by addition of 1.8 mM Ca2+. Ca2+ influx was required for the changes of [Ca2+]i, since the Ca(2+)-channel blockers, diltiazem, verapamil, and Ni2+, decreased both the initial and sustained elevation of [Ca2+]i response to these peptides. ETs exhibited homologous desensitization of the Ca2+ response, but partial heterologous desensitization of the Ca2+ response mediated by carbachol to different extents. In contrast, ETs did not desensitize the Ca2+ response induced by ATP or vice versa. These data demonstrate that the initial detectable increase in [Ca2+]i stimulated by these peptides is due to the activation of ETA receptors and subsequently the release of Ca2+ from internal stores, whereas the contribution of external Ca2+ follows and partially involves a diltiazem- and verapamil-sensitive process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The role of sodium-calcium exchanger in calcium homeostasis in Bergmann glial cells in situ was investigated by monitoring cytoplasmic calcium ([Ca2+]i) and sodium ([Na+]i) concentrations. The [Ca2+]i and [Na+]i transients were measured either separately by using fluorescent indicators fura-2 and SBFI, respectively, or simultaneously using the indicators fluo-3 and SBFI. Since the removal of extracellular Na+ induced a relatively small (approximately 50 nM) elevation of [Ca2+]i, the Na+/Ca2+ exchanger seems to play a minor role in regulation of resting [Ca2+]i. In contrast, kainate-triggered [Ca2+]i increase was significantly suppressed by lowering of the extracellular Na+ concentration ([Na+]o). In addition, manipulations with [Na+]o dramatically affected the recovery of the kainate-induced [Ca2+]i transients. Simultaneous recordings of [Ca2+]i and [Na+]i revealed that kainate-evoked [Ca2+]i transients were accompanied with an increase in [Na+]i. Moreover, kainate induced significantly larger [Ca2+]i and smaller [Na+]i transients under current-clamp conditions as compared to those recorded when the membrane voltage was clamped at -70 mV. The above results demonstrate that the Na(+)-Ca2+ exchanger is operative in Bergmann glial cells in situ and is able to modulate dynamically the amplitude and kinetics of [Ca2+]i signals associated with an activation of ionotropic glutamate receptors.  相似文献   

11.
Increased Na+/H+ antiport activity has been implicated in the pathogenesis of hypertension and vascular disease in diabetes mellitus. The independent effect of elevated extracellular glucose concentrations on Na+/H+ antiport activity in cultured rat vascular smooth muscle cells (VSMC) was thus examined. Amiloride-sensitive 22Na+ uptake by VSMC significantly increased twofold after 3 and 24 h of exposure to high glucose medium (20 mM) vs. control medium (5 mM). Direct glucose-induced Na+/H+ antiport activation was confirmed by measuring Na(+)-dependent intracellular pH recovery from intracellular acidosis. High glucose significantly increased protein kinase C (PKC) activity in VSMC and inhibition of PKC activation with H-7, staurosporine, or prior PKC downregulation prevented glucose-induced increases in Na+/H+ antiport activity in VSMC. Northern analysis of VSMC poly A+ RNA revealed that high glucose induced a threefold increase in Na+/H+ antiport (NHE-1) mRNA at 24 h. Inhibiting this increase in NHE-1 mRNA with actinomycin D prevented the sustained glucose-induced increase in Na+/H+ antiport activity. In conclusion, elevated glucose concentrations significantly influence vascular Na+/H+ antiport activity via glucose-induced PKC dependent mechanisms, thereby providing a biochemical basis for increased Na+/H+ antiport activity in the vascular tissues of patients with hypertension and diabetes mellitus.  相似文献   

12.
Endothelins (ETs) are 21 amino acid peptides with vasoactive and mitogenic properties. The three isopeptides (ET-1, -2, and -3) and their receptors (E1A and ETB subtypes) display expression in numerous tissues and possibly mediate autocrine/paracrine actions. The present investigation shows that ET-1 triggers biphasic increases of the concentration of cytoplasmic Ca2+ ([Ca2+]i) in pathological human parathyroid cells. Both the peak and sustained [Ca2+]i increase, as well as the proportion of responding cells, are dose-dependent in the 10(-10)-10(-7) mol/L range of ET-1. In absence of external Ca2+, the ET-1-induced [Ca2+]i peak is attenuated. ET-3 has no effect on [Ca2+]i indicating functional dominance of the ETA receptor subtype. ET-1 (10 nmol/L) lowers parathyroid hormone secretion in 0.5 mmol/L but not in higher external Ca2+ concentrations, and parathyroid cell ET release is inhibited by increases of external Ca2+. Fibroblasts overgrowing the parathyroid chief cells during monolayer culture respond to ET-1 with biphasic [Ca2+]i increases or repetitive [Ca2+]i spikes, but show no response to elevation of external Ca2+. These findings imply that ET secretion and ET receptor expression may constitute an autocrine/paracrine mechanism in the regulation of human PTH secretion.  相似文献   

13.
It has been previously reported that parathyroid cells express endothelin (ET) receptors and secrete ET-1 in an extracellular Ca2+ concentration ([Ca2+]e)-dependent manner. Here, we examined the effects of ET-1 on intracellular signaling and parathyroid hormone (PTH) secretion in dispersed bovine parathyroid (bPT) cells, which comprise several cell types including epithelial and endothelial cells, in two cell lines, the rat parathyroid epithelial (PT-r) and the bovine parathyroid endothelial (BPE-1) cells. An RNA-polymerase chain reaction analysis revealed that both ETA and ETB receptors are expressed in bovine parathyroid tissue and BPE-1 cells, and only the ETA receptor is expressed in PT-r cells. PT-r cells also expressed an inositol 1,4,5-trisphosphate (Ins[1,4,5]P3) receptor, and ionomycin induced an increase in the intracellular Ca2+ concentrations ([Ca2+]i) in a Ca(2+)-deficient medium, indicating the presence of an operative intracellular Ca2+ pool in these cells. In cells bathed in 1 mM [Ca2+]e, ET-1 induced a rapid and transient increase in the Ins(1,4,5)P3 production, which was associated with a similar profile of increase in [Ca2+]i and with a peak response of about 800 nM. No changes in the profile of [Ca2+]i responses were observed in ET-1-stimulated cells in the presence of Ca2+ channel blockers, or in Ca(2+)-deficient medium, indicating that Ca2+ mobilization was not associated with Ca2+ entry. Furthermore, a sustained stimulation with ET-1 induced a decrease in [Ca2+]i below the prestimulatory level in a large population of cells, and the percentage of the cell population that shows the sustained decrease of [Ca2+]i increased in higher ET-1 concentrations. [Ca2+]i in PT-r cells was also controlled by a [Ca2+]e-dependent mechanism that changed [Ca2+]i from 28 to 506 nM in a 0.1-3 mM concentration range with an EC50 of 1.2 mM, which is comparable to that reported for bPT cells. In the same range of [Ca2+]e, PTH secretion from bPT cells was inhibited with an IC50 of 1 mM, and ET-1 increased PTH release in a dose-dependent manner but without affecting the IC50 for the [Ca2+]e-dependent inhibition. Thus, the parathyroid epithelial cells appear to respond to ET-1 in a unique way, and the ET autocrine system can be regarded as a possible mechanism to modulate the sensitivity of [Ca2+]e-dependent PTH release.  相似文献   

14.
BACKGROUND: We compared the effects of the nitric oxide donor sodium nitroprusside (SNP) on intracellular pH (pHi), intracellular calcium concentration ([Ca2+]i) transients, and cell contraction in hypertrophied adult ventricular myocytes from aortic-banded rats and age-matched controls. METHODS AND RESULTS: pHi was measured in individual myocytes with SNARF-1, and [Ca2+]i transients were measured with indo 1 simultaneously with cell motion. Experiments were performed at 37 degrees C in myocytes paced at 0.5 Hz in HEPES-buffered solution (extracellular pH = 7.40). At baseline, calibrated pHi, diastolic and systolic [Ca2+]i values, and the amplitude of cell contraction were similar in hypertrophied and control myocytes. Exposure of the control myocytes to 10(-6) mol/L SNP caused a decrease in the amplitude of cell contraction (72 +/- 7% of baseline, P < .05) that was associated with a decrease in pHi (-0.10 +/- 0.03 U, P < .05) with no change in peak systolic [Ca2+]i. In contrast, in the hypertrophied myocytes exposure to SNP did not decrease the amplitude of cell contraction or cause intracellular acidification (-0.01 +/- 0.01 U, NS). The cGMP analogue 8-bromo-cGMP depressed cell shortening and pHi in the control myocytes but failed to modify cell contraction or pHi in the hypertrophied cells. To examine the effects of SNP on Na(+)-H+ exchange during recovery from intracellular acidosis, cells were exposed to a pulse and washout of NH4Cl. SNP significantly depressed the rate of recovery from intracellular acidosis in the control cells compared with the rate in hypertrophied cells. CONCLUSIONS: SNP and 8-bromo-cGMP cause a negative inotropic effect and depress the rate of recovery from intracellular acidification that is mediated by Na(+)-H+ exchange in normal adult rat myocytes. In contrast, SNP and 8-bromo-cGMP do not modify cell contraction or pHi in hypertrophied myocytes.  相似文献   

15.
The role of the Na+/Ca2+ exchanger and intracellular nonmitochondrial Ca2+ pool in the regulation of cytosolic free calcium concentration ([Ca2+]i) during catecholamine secretion was investigated. Catecholamine secretion and [Ca2+]i were simultaneously monitored in a single chromaffin cell. After high-K+ stimulation, control cells and cells in which the Na+/Ca2+ exchange activity was inhibited showed similar rates of [Ca2+]i elevation. However, the recovery of [Ca2+]i to resting levels was slower in the inhibited cells. Inhibition of the exchanger increased the total catecholamine secretion by prolonging the secretion. Inhibition of the Ca2+ pump of the intracellular Ca2+ pool with thapsigargin caused a significant delay in the recovery of [Ca2+]i and greatly enhanced the secretory events. These data suggest that both the Na+/Ca2+ exchanger and the thapsigargin-sensitive Ca2+ pool are important in the regulation of [Ca2+]i and, by modulating the time course of secretion, are important in determining the extent of secretion.  相似文献   

16.
1. We designed a new method to determine quantitatively the intracellular Ca2+ concentration ([Ca2+]i) in endothelial cells in situ, using front-surface fluorometry and fura-2-loaded porcine aortic valvular strips. Using this method, we investigated the characteristics of the G-protein involved in endothelin-1 (ET-1)-induced changes in [Ca2+]i of endothelial cells in situ. 2. Endothelial cells were identified by specific uptake of acetylated-low density lipoprotein labelled with 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (DiI-Ac-LDL). Double staining with DiI-Ac-LDL and fura-2 showed that the valvular strip was covered with a monolayer of endothelial cells and that the cellular component which contributed to the fura-2 fluorescence, [Ca2+]i signal, was exclusively endothelial cells. 3. ET-1 (10(-7) M) induced an elevation of [Ca2+]i consisting of two components: the first was a rapid and transient elevation to reach a peak, followed by a second, sustained elevation (the second phase). The first phase was composed of extracellular Ca(2+)-independent and -dependent components, while the second phase was exclusively extracellular Ca(2+)-dependent. The extracellular Ca(2+)-independent component of the first phase was due to the release of Ca2+ from intracellular storage sites. The second phase and part of the first phase of [Ca2+]i elevation were attributed to the influx of extracellular Ca2+. The Ca2+ influx component was completely inhibited by 10(-3) M Ni2+ but was not affected by 10(-5) M diltiazem. 4. Pertussis toxin (IAP) markedly inhibited the extracellular Ca2+-dependent elevation of [Ca2+]j, but had no effect on the extracellular Ca2+-independent elevation of [Ca2+], caused by ET-1 (10-7M).5. Bradykinin (10-7 M) or ATP (10- 5M) elevated [Ca2+]i and these responses also consisted of extracellular Ca2+-independent and extracellular Ca2+-dependent components. IAP had no effect on either component of the [Ca2+]i elevation induced by bradykinin or ATP.6. From these findings we conclude that, in porcine endotheliel cells in situ, ET-1 elevates [Ca2+]i as are result of a Ca2+ influx component from the extracellular space and release of intracelluarly stored Ca2+ .The Ca2+ influx is regulated by an IAP-sensitive G-protein, while the release of Ca2+ from the intracellular store is not.  相似文献   

17.
The aim was to investigate in detail the influence of intracellular pH (pHi) and intracellular Ca2+ concentration ([Ca2+]i) on apoptosis in HL-60 human promyelocytic leukaemia cells. The pHi was controlled by changing the pH of media as well as by interfering with the pHi regulatory mechanisms with 3-amino-6-chloro-5-(1-homopiperidyl)-N-(diaminomethylene) pyrazincarboxamide (HMA; an inhibitor of Na+/H+ antiport), 4-diiosothiocyanatostilbene-2,2'disulfonic acid, (DIDS; an inhibitor of Na(+)-dependent HCO3-/Cl- exchange) and nigericin (a K+ ionophore). The [Ca2+]i was increased with ionomycin, a Ca2+ ionophore. The apoptosis of HL-60 cells was measured with conventional agarose gel electrophoresis for DNA fragmentation and also with the release of 3H from 3H-thymidine-labelled DNA. Based on the magnitude of DNA fragmentation and 3H release at different pHi, it was shown that apoptosis occurred in HL-60 cells when the pHi was lowered from normal pHi of 7.4 to about 7.2-6.7 with a peak increase at pHi 6.8-6.9. Addition of 4 microM ionomycin to RPMI 1640 medium, which contained 615 microM Ca2+, elevated the apoptosis in the cells. Such an increase in apoptosis by ionomycin in HL-60 cells appeared to result from both an increase in [Ca2+]i and from a decline in pHi. The results indicate that the acidic intratumour environment may greatly affect the response of neoplastic tissues to hyperthermia, radiation and chemotherapeutic drugs which cause apoptosis.  相似文献   

18.
1. In A7r5 cells loaded with the Ca2+ indicator fura-2, we examined the effect of a Ca2+ channel blocker SK&F 96365 on increases in intracellular free Ca2+ concentrations ([Ca2+]i) and Mn2+ quenching of fura-2 fluorescence by endothelin-1 (ET-1). Whole-cell patch-clamp was also performed. 2. Higher concentrations (> or = 10 nM) of ET-1 (higher [ET-1]) evoked a transient peak and a subsequent sustained elevation in [Ca2+]i: removal of extracellular Ca2+ abolished only the latter. A blocker of L-type voltage-operated Ca2+ channel (VOC) nifedipine at 1 microM reduced the sustained phase to about 50%, which was partially sensitive to SK&F 96365 (30 microM). 3. Lower [ET-1] (< or = 1 nM) evoked only a sustained elevation in [Ca2+]i which depends on extracellular Ca2+. The elevation was partly sensitive to nifedipine but not SK&F 96365. 4. In the presence of 1 microM nifedipine, higher [ET-1] increased the rate of Mn2+ quenching but lower [ET-1] had little effect. 5. In whole-cell recordings, both lower and higher [ET-1] induced inward currents at a holding potential of -60 mV with linear I-V relationships and reversal potentials close to 0 mV. The current at lower [ET-1] was resistant to SK&F 96365 but was abolished by replacement of Ca2+ in the bath solution with Mn2+. The current at higher [ET-1] was abolished by the replacement plus SK&F 96365. 6. In a bath solution containing only Ca2+ as a movable cation, ET-1 evoked currents: the current at lower [ET-1] was sensitive to Mn2+, whereas that at higher [ET-1] was partly sensitive to SK&F 96365. 7. These results indicate that in addition to VOC, ET-1 activates two types of Ca2+-permeable nonselective cation channel depending on its concentrations which differ in terms of sensitivity to SK&F 96365 and permeability to Mn2+.  相似文献   

19.
The endothelin (ET) isoforms ET-1, ET-2 and ET-3 applied at 100 nM triggered a transient increase in [Ca2+]i in Bergmann glial cells in cerebellar slices acutely isolated from 20-25 day-old mice. The intracellular calcium concentration ([Ca2+]i) was monitored using Fura-2-based [Ca2+]i microfluorimetry. The ET-triggered [Ca2+]i transients were mimicked by ETB receptor agonist BQ-3020 and were inhibited by ETB receptor antagonist BQ-788. ET elevated [Ca2+]i in Ca(2+)-free extracellular solution and the ET-triggered [Ca2+]i elevation was blocked by 500 nM thapsigargin indicating that the [Ca2+]i was released from InsP3-sensitive intracellular pools. The ET-triggered [Ca2+]i increase in Ca(2+)-free solution was shorter in duration. Restoration of normal extracellular [Ca2+] briefly after the ET application induced a second [Ca2+]i increase indicating the presence of a secondary Ca2+ influx which prolongs the Ca2+ signal. Pre-application of 100 microM ATP or 10 microM noradrenaline blocked the ET response suggesting the involvement of a common Ca2+ depot. The expression of ETB receptor mRNAs in Bergmann glial cells was revealed by single-cell RT-PCR. The mRNA was also found in Purkinje neurones, but no Ca2+ signalling was triggered by ET. We conclude that Bergmann glial cells are endowed with functional ETB receptors which induce the generation of intracellular [Ca2+]i signals by activation of Ca2+ release from InsP3-sensitive intracellular stores followed by a secondary Ca2+ influx.  相似文献   

20.
Intraerythrocytic malaria parasites produce vast amounts of lactic acid through glycolysis. While the egress of lactate is very rapid, the mode of extrusion of H+ is not known. The possible involvement of a Na+/H+ antiport in the extrusion of protons across the plasma membrane of Plasmodium falciparum has been investigated by using the fluorescent pH probe 6-carboxyfluorescein. The resting cytosolic pH was 7.27 +/- 0.1 in ring stage parasites and 7.31 +/- 0.12 in trophozoites. Spontaneous acidification of parasite cytosol was observed in Na(+)-free medium and realkalinization occurred upon addition of Na+ to the medium in a concentration-dependent manner, with no apparent saturation. The rate of H(+)-efflux at the ring stage was higher than that at the trophozoite stage due to the larger surface/volume ratio of the young parasite stage. Na(+)-dependent H(+)-efflux was: 1) inhibited by the Na+/H+ inhibitors amiloride and 5-(N-ethyl-N-isopropyl) amiloride (EIPA), though at relatively high concentrations; 2) augmented with rising pH6 (pHi = 6.2, [Na+]o = 30 mM); and 3) decreased with increasing pHi (pHo = 7.4; [Na+]o = 30 mM). The pHi and the pHo dependencies of H(+)-efflux were almost identical at all parasite stages. Only at pHi > 7.6 efflux was totally obliterated. The target of this inhibitory effect is probably other than the antiport. Results indicate that H(+)-egress is mediated by a Na+/H+ antiport which is regulated by host and parasite pH and by the host cytosol sodium concentration. The proton transport capacity of the antiport can easily cope with all the protons of lactic acid produced by parasite's glycolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号