首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Backscatter signatures of multiyear sea ice (MYI) during the late summer and early fall season before the fall freeze-up in the Canadian Arctic Archipelago (CAA) have been obtained through the use of a ship-based polarimetric scatterometer. The device operates in C-band, and measurements were conducted in swaths from incidence angles of 20 $^{circ}$–60$^{circ}$ . Three characteristic sites on MYI floes were investigated in the high Arctic and the central Arctic regions. In situ snow and sea-ice thermophysical data were collected at each site in conjunction with local scatterometer measurements. The thermophysical data were subsequently analyzed using dielectric modeling techniques and coupled with the backscattering measurements $(sigma^{circ})$. Observed backscatter values and ratios were found to be in agreement with literature data, with volumetric scattering as the dominant scattering mechanism.   相似文献   

2.
This paper presents a case study of C-band backscatter observations of snow during a Chinook event. A surface-based C-band polarimetric data set collected in February 2006 is used to contrast the polarimetric response to sampled conditions of bare frozen ground, cold snow-covered ground, and snow during a Chinook event. Chinook activity is inherently spatially and temporally variable across the region in winter and produces considerable spatial variability of snow-cover physical properties associated with snow–water-equivalent (SWE) estimates. A temporal analysis of polarimetric backscatter sensed during a Chinook-induced ablation event on February 27, 2006 is used to describe the associated changes in snow conditions and scattering mechanisms. Analysis reveals that the polarimetric surface-based C-band scatterometer data respond to changes in snow parameters associated with the specific ground and snow conditions and to the temporal Chinook ablation event. Use of the copolarizations, cross-polarization, depolarization ratio, copolarization ratio, complex copolarization correlation coefficient, and the copolarized phase difference information show promise in describing changes in snow physical parameters, differing ground and snow conditions, and transitional ablation events, based on differing scattering mechanisms. This paper infers that an increase in volume scattering and fluctuations in surface scattering during the Chinook ablation event may be associated with specific physical changes such as density, crystal structure, and permittivity caused by wind speed. This paper has implications for remotely sensed estimations of snow-covered area (SCA) and SWE. Association of SCA and SWE with backscatter coefficients is not explicit in this paper; however, changes in SWE and snow properties are inferentially linked to changes in backscatter.   相似文献   

3.
In a continuing evaluation of the ERS-1 C-band scatterometer as a tool for studying polar sea ice, the authors evaluate the azimuthal modulation characteristics of Antarctic sea ice. ERS-1 AMI scatterometer mode data sets from several study regions dispersed in the Antarctic seasonal sea ice pack are evaluated for azimuthal modulation. When appropriate, the incidence angle dependence is estimated and removed in a study region before determining whether azimuthal modulation is present in the data. Other comparisons are made using the fore and aft beam measurement difference. The results show that over the ice pack, azimuthal modulation is less than 1 dB at the scale of observation of the ERS-1 C-band scatterometer  相似文献   

4.
This paper describes a classification algorithm using dual-polarized scatterometer measurements to identify the edge of the sea ice cover. The distinct polarization scattering signatures of sea ice and open water are discussed and illustrated with the dual-polarized radar measurements from the Seasat-A scatterometer (SASS). The analysis of SASS data suggests that the ratio of vertical and horizontal polarization backscatter, denoted as the copol ratio, is a useful discriminator of sea ice and open ocean. A simple classification algorithm using the thresholds of the copol ratio and backscatter levels is proposed. The feasibility of this algorithm is demonstrated using the SASS data from the single-sided, dual-polarization mode. The results indicate that the dual-polarized measurements from the NASA scatterometer (NSCAT) can be used to produce routine maps of sea ice edges  相似文献   

5.
A ground-based C-band scatterometer system has been constructed at the Multimedia University, Malaysia. This is an inexpensive FM-CW radar that was efficiently constructed from a combination of commercially available components and in-house fabricated circuitry. The system has full polarimetric capability for determining the complete backscattering matrix of a natural target. It will be used to conduct in-situ backscatter measurements on Earth terrain, such as vegetation fields, forests, and soil surfaces. This paper presents the system design and the evaluation results of the scatterometer system. The system was tested at a football field. A metal sphere was used as the calibration target. The backscattering matrices of an 8" trihedral corner reflector and of a 4" /spl times/ 8" dihedral corner reflector were measured. The dihedral was rotated at different angles to provide different sets of polarimetric data. The results were compared with the theoretical values to verify the effectiveness of the calibration technique. The external calibration and internal calibration procedures, as well as the approach used in measuring the relative phase response, are discussed.  相似文献   

6.
For sea ice in the Baltic Sea, surface scattering can be regarded as the dominant scattering mechanism at C-band. In this paper, a new statistical method is introduced for making statistical inferences about the underlying ice surface roughness on the basis of one-dimensional (1D) scatterometer data y. The central parameter in the hierarchical model applied in the context is a mixture parameter p, which indicates the degree of surface roughness in ice surface. Several questions related to the occurrence of different ice classes on a transect can be solved with the aid of the posterior distribution [p|y]. An empirical approximation for the posterior distribution is computed by using Markov Chain Monte Carlo methodology. The efficiency of the suggested approach is investigated by analyzing a C-band HH-polarization helicopter-borne HUTSCAT scatterometer data. The results provided by the statistical model show good agreement with a video-based ice type classification  相似文献   

7.
Radar backscatter signatures of old sea ice in the central Arctic have been measured and analyzed. A ship-mounted scatterometer was used to acquire backscattering coefficients at 5.4 GHz in the four linear polarization states and at incidence angles between 20° and 60°. Detailed in situ characterizations of the snow and ice were also made to enable comparison with theoretical backscatter models. Freeze-up conditions were prevalent during the experiment. The average backscattering coefficient was found to increase when the temperature of the ice surface layer decreased. The semi-empirical backscatter model is used to evaluate the measurements and shows that the backscatter increase is due to an increasing penetration depth, causing the volume scattering to increase. Model predictions also show that both surface and volume scattering contribute significantly at incidence angles of 20° to 26°. At these incidence angles, the dominating scattering mechanism changes from surface to volume scattering as the ice surface temperature decreases  相似文献   

8.
Characteristics of the Ku-band polarimetric scatterometer (POLSCAT) data acquired from five sets of aircraft flights in the winter months of 2006-2008 for the second Cold Land Processes Experiment (CLPX-II) in Colorado are described in this paper. The data showed the response of the Ku-band radar echoes to snowpack changes for various types of background vegetation in the study site in north central Colorado. We observed about 0.15-0.5-dB increases in backscatter for every 1 cm of snow-water-equivalent (SWE) accumulation for areas with short vegetation (sagebrush and pasture). The region with the smaller amount of biomass, signified by the backscatter in November, seemed to have the stronger backscatter response to SWE in decibels. The data also showed the impact of surface hoar growth and freeze/thaw cycles, which created large snow-grain sizes, ice crust layers, and ice lenses and consequently increased the radar signals by a few decibels. The copolarized HH/VV backscatter ratio seems to indicate double-bounce scattering between the ground surface and snow or vegetation. The cross-polarized backscatter [vertical-horizontal (VH)] showed not only the influence of vegetation but also the strong response to snow accumulation. The observed HV/VV ratio suggests the importance of multiple scattering or nonspherical scattering geometry of snow grain in the dense-media radiative transfer scattering model. Comparison of the POLSCAT and QuikSCAT data was made and confirmed the effects of mixed terrain covers in the coarse-resolution QuikSCAT data.  相似文献   

9.
A geophysical model function (GMF), relating the directional response of polarimetric brightness temperatures to ocean surface winds, is developed for the WindSat multifrequency polarimetric microwave radiometer. This GMF is derived from the WindSat data and tuned with the aircraft radiometer measurements for very high winds from the Hurricane Ocean Wind Experiment in 1997. The directional signals in the aircraft polarimetric radiometer data are corroborated by coincident Ku-band scatterometer measurements for wind speeds in the range of 20-35 m/s. We applied an iterative retrieval algorithm using the polarimetric brightness temperatures from 18-, 23-, and 37-GHz channels. We find that the root-mean-square direction difference between the Global Data Assimilation System winds and the closest WindSat wind ambiguity is less than 20/spl deg/ for above 7-m/s wind speed. The retrieval analysis supports the consistency of the Windrad05 GMF with the WindSat data.  相似文献   

10.
Experimental data are presented to support the development of a new concept for ocean wind velocity measurement (speed and direction) with the polarimetric microwave radar technology. This new concept has strong potential for improving the wind direction accuracy and extending the useful swath width by up to 30% for follow-on NASA spaceborne scatterometer mission to SeaWinds series. The key issue is whether there is a relationship between the polarization state of ocean backscatter and surface wind velocity at NASA scatterometer frequencies (13 GHz). An airborne Ku-band polarimetric scatterometer (POLSCAT) was developed for proof-of-concept measurements. A set of aircraft flights indicated repeatable wind direction signals in the POLSCAT observations of sea surfaces at 9-11 m/s wind speed. The correlation coefficients between co- and cross-polarized radar response of ocean surfaces have a peak-to-peak amplitude of about 0.4 and are shown to have an odd-symmetry with respect to the wind direction, unlike the normalized radar cross sections  相似文献   

11.
Backscattering properties of boreal forests at the C- and X-bands   总被引:1,自引:0,他引:1  
The backscattering properties of boreal forests are studied using empirical airborne and spaceborne radar data from Finland. Airborne measurements were carried out in the summer of 1992 by the HUTSCAT scatterometer at the Teijo test area in southern Finland. The HUTSCAT scatterometer is an eight-channel helicopter-borne profiling radar operating at the C- and X-bands. The ranging capability of the HUTSCAT scatterometer was employed in the semiempirical modeling of forest backscatter. The backscatter profile information was used in the analysis of the canopy transmissivity and the canopy backscattering coefficient by distinguishing backscattering contributions from the canopy and the ground. Additionally, ERS-1 C-band satellite SAR measurements were obtained for the Teijo test area and for the reference test area in Sodankyla in northern Finland. The radar results were compared with operational ground-based forest assessment data on forest compartments (stands) of the area. The key parameter investigated was the stem (bole) volume per hectare. The results obtained show the behavior of the canopy transmissivity and the canopy backscatter as a function of stem volume (directly related to the forest biomass). The influence of seasonal and diurnal changes on, and the effects of the changes in soil moisture to the backscattering coefficient were also investigated  相似文献   

12.
A method for unsupervised segmentation of polarimetric synthetic aperture radar (SAR) data into classes of homogeneous microwave polarimetric backscatter characteristics is presented. Classes of polarimetric backscatter are selected on the basis of a multidimensional fuzzy clustering of the logarithm of the parameters composing the polarimetric covariance matrix. The clustering procedure uses both polarimetric amplitude and phase information, is adapted to the presence of image speckle, and does not require an arbitrary weighting of the different polarimetric channels; it also provides a partitioning of each data sample used for clustering into multiple clusters. Given the classes of polarimetric backscatter, the entire image is classified using a maximum a posteriori polarimetric classifier. Four-look polarimetric SAR complex data of lava flows and of sea ice acquired by the NASA/JPL airborne polarimetric radar (AIRSAR) are segmented using this technique  相似文献   

13.
The radar phenomenology of high-voltage power lines and cables is studied for examining the feasibility of detecting power lines along the path of a low-flying aircraft using a millimeter-wave radar system. For this purpose, polarimetric backscatter measurements of power line samples of different diameters and strand arrangements were performed over a wide range of incidence angles with very fine increments at 94 GHz. Also, similar polarimetric backscatter measurements were conducted for cylinders of the same radii and lengths as the power line samples for identifying the scattering features caused by the braiding structure of the power lines. In addition, the effects of a thin layer of water and a layer of ice over the power line surface on its polarimetric scattering behavior are studied by repeating the polarimetric backscatter measurements. Based on this phenomenological study, a polarimetric detection algorithm that makes use of the scattering features caused by the braided structure of power lines is proposed. It is shown that the proposed algorithm is capable of detecting power lines in a relatively strong clutter background with a poor signal-to-clutter ratio. The performance of the algorithm is demonstrated experimentally using a rough asphalt surface and a vegetation foliage as sample clutter backgrounds  相似文献   

14.
Characterization of the microwave signature of the Greenland snow surface enables delineation of the different snow facies and is a tool for tracking the effects of climate change. A new empirical observation model is introduced that uses a limited number of parameters to characterize the snow surface based on the dependence of radar backscatter on incidence angle, azimuth angle, spatial gradient, and temporal rate of change. The individual model parameters are discussed in depth with examples using data from the NASA Scatterometer (NSCAT) and from the C-band European Remote Sensing (ERS) satellite Advanced Microwave Instrument in scatterometer mode. The contribution of each model term to the overall accuracy of the model is evaluated. The relative contributions of the modeled dependencies vary by region. Two studies illustrating applications of the model are included. First, interannual changes over the Greenland ice sheet are investigated using nine years of ERS data. Surface changes are observed as anomalies in the /spl sigma//spl deg/ model parameters. Second, intraannual variations of the surface are investigated. These changes are observed in the average backscatter normalized to a given observation geometry. The results indicate that the model can be used to obtain a more complete understanding of multiyear change and to obtain low-variance high temporal resolution observations of intraannual changes. The model may be applied for increased accuracy in scatterometer, synthetic aperture radar (SAR), and wide-angle SAR studies.  相似文献   

15.
Snow accumulation in remote regions, such as Greenland and Antarctica, is a key factor for estimating the Earth's ice mass balance. In situ data are sparse; hence, they are useful to derive snow accumulation from remote sensing observations, such as microwave thermal emission and radar brightness. These data are usually interpreted using electromagnetic models in which volume scattering is the dominant mechanism. The main limitation of this approach is that microwave brightness is not well related to backscatter if the ice sheet is layered. Because larger grain size and thicker annual layers both increase radar image brightness, with the first corresponding to lower accumulation rate and the second to higher accumulation rate, models of radar brightness alone cannot accurately reflect accumulation. Consideration of correlation measurements can also resolve this ambiguity. We introduce an interferometric ice scattering model that relates the interferometric synthetic aperture radar correlation and radar brightness to both ice grain size and hoar layer spacing in the dry-snow zone of Greenland. We use this model and the European Remote Sensing satellite radar observations to derive several parameters related to snow accumulation rates in a small area in the dry-snow zone. These parameters show agreement with four in situ core accumulation rate measurements in this area, whereas models using only radar brightness data do not match the observed variation in accumulation rates  相似文献   

16.
Microwave Sea-Ice Signatures near the Onset of Melt   总被引:1,自引:0,他引:1  
On June 22, 1982, the Canada Centre for Remote Sensing's Convair 580 aircraft (CCRS CV-580) made X-band SAR, Ku-band scatterometer, and K-band Radiometer measurements of the sea ice in Crozier Channel. Measurements of the physical properties of the ice and snow cover were in progress at a site in the southern portion of the CV-580 measurement area at the time of overflight. The CV-580 X-band SAR and Ku-band scatterometer were cross calibrated with the University of Kansas Heloscat to examine the frequency dependence of surface signatures. Analysis of the combined airborne and surface characterization data set shows that the microwave signatures of the surface, under the conditions present, were dominated by the snow cover and, in bare ice areas, by surface moisture. At frequencies above 9.35 GHz no scattering cross section/brightness temperature signatures could be uniquely related to ice type over the entire experiment area.  相似文献   

17.
The Naval Research Laboratory WindSat polarimetric radiometer was launched on January 6, 2003 and is the first fully polarimetric radiometer to be flown in space. WindSat has three fully polarimetric channels at 10.7, 18.7, and 37.0 GHz and vertically and horizontally polarized channels at 6.8 and 23.8 GHz. A first-generation wind vector retrieval algorithm for the WindSat polarimetric radiometer is developed in this study. An atmospheric clearing algorithm is used to estimate the surface emissivity from the measured WindSat brightness temperature at each channel. A specular correction factor is introduced in the radiative transfer equation to account for excess reflected atmospheric brightness, compared to the specular assumption, as a function wind speed. An empirical geophysical model function relating the surface emissivity to the wind vector is derived using coincident QuikSCAT scatterometer wind vector measurements. The confidence in the derived harmonics for the polarimetric channels is high and should be considered suitable to validate analytical surface scattering models for polarized ocean surface emission. The performance of the retrieval algorithm is assessed with comparisons to Global Data Assimilation System (GDAS) wind vector outputs. The root mean square (RMS) uncertainty of the closest wind direction ambiguity is less than 20/spl deg/ for wind speeds greater than 6 m/s and less than 15/spl deg/ at 10 m/s and greater. The retrieval skill, the percentage of retrievals in which the first-rank solution is the closest to the GDAS reference, is 75% at 7 m/s and 85% or higher above 10 m/s. The wind speed is retrieved with an RMS uncertainty of 1.5 m/s.  相似文献   

18.
The pack ice in the Arctic Ocean was the subject of a special remote sensing mission conducted jointly by the National Aeronautics and Space Administration, the Navy Oceanographic Office, the U. S. Army Cold Regions Research and Engineering Laboratory, the Arctic Institute of North America, and the University of Kansas. One of the most significant results of the experiment was verification of the ice type identification potential of a 2.25-cm-wavelength radar scatterometer. The results of the radar experiment are presented and the data are analyzed to determine the characteristics of radar backscatter from various Arctic ice types. A quantitative analysis of the data indicates that identifiable radar return "signatures" are obtained for each of several specific sea ice types. A qualitative analysis based on the Kirchhoff-Huygens principle suggests that a categorizing factor, denoted as the surface roughness factor, can be assigned to each of several ice types.  相似文献   

19.
Large-scale inverse Ku-band backscatter modeling of sea ice   总被引:2,自引:0,他引:2  
Polar sea ice characteristics provide important inputs to models of several geophysical processes. Microwave scatterometers are ideal for monitoring these regions due to their sensitivity to ice properties and insensitivity to atmospheric distortions. Many forward electromagnetic scattering models have been proposed to predict the normalized radar cross section (/spl sigma//spl deg/) from sea ice characteristics. These models are based on very small scale ice features and generally assume that the region of interest is spatially homogeneous. Unfortunately, spaceborne scatterometer footprints are very large (5-50 km) and usually contain very heterogeneous mixtures of sea ice surface parameters. In this paper, we use scatterometer data in a large-scale inverse modeling experiment. Given the limited data resolution, we adopt a simple geometric optics forward-scattering model to analyze surface and volume scattering contributions to observed Ku-band signatures. A model inversion technique based on recursive optimization of an objective function is developed. The result is a least squares estimate of three surface parameters: the power reflection coefficient at nadir, the rms surface slope, and the volume scattering albedo. Simulations demonstrate the performance of the method in the presence of noise. The inverse model is implemented using Ku-band image reconstructed data collected by the National Aeronautics and Space Administration scatterometer. The results are used to analyze and interpret /spl sigma//spl deg/ phenomena occurring in the Antarctic and the Arctic.  相似文献   

20.
The millimeter-wave (MMW) backscatter response of bare-soil was examined by conducting experimental measurements at 35 and 94 GHz using a truck-mounted polarimetric scatterometer and by developing appropriate models to relate the backscattering coefficient to the soil's surface and volume properties. The experimental measurements were conducted for three soil surfaces with different roughnesses under both dry and wet conditions. The experimental measurements indicate that in general the backscattering coefficient is comprised of a surface scattering component σs and a volume scattering component σ v. For wet soil conditions, the backscatter is dominated by surface scattering, while for dry conditions both surface and volume scattering are significant, particularly at 94 GHz. Because theoretical surface scattering models were found incapable of predicting the measured backscatter, a semiempirical surface scattering model was developed that relates the surface scattering component of the total backscatter to the roughness parameter ks, where k=2π/λ and s is the rms height, and the dielectric constant of the soil surface. Volume scattering was modeled using radiative transfer theory with the packed soil particles acting as the host material and the air voids as the scattering particles. The combined contribution of surface and volume scattering was found to provide good agreement between the model calculations and the experimental observations  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号