首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
针对基本粒子群(PSO)算法不能较好地解决旅行商优化问题(TSP),分析了基本粒子群算法的优化机理,在新定义粒子群进化方程中进化算子的基础上利用混沌运动的随机性、遍历性等特点,提出一种结合混沌优化和粒子群算法的改进混沌粒子群算法.该算法对惯性权重进行自适应调整,引入混沌载波调整搜索策略避免陷入局部最优,形成一种同时满足全局和局部寻优搜索的混合离散粒子群算法,使其适合解决TSP此类组合优化问题.利用MATLAB对其进行了仿真.仿真结果说明此算法的搜索精度、收敛速度及优化效率均较优,证明了此算法在TSP中应用的有效性,且为求解TSP提供了一种参考方法.  相似文献   

2.
针对柴油生产过程中的加氢精制与调合优化问题,建立加工和库存成本优化模型,采用改进粒子群算法进行计算。通过对某炼油厂一个月的柴油生产数据进行测试,结果表明该算法有较好的应用效果,对柴油排产有一定的指导作用。  相似文献   

3.
针对基本人工鱼群算法(AFSA)收敛速度较慢、精度较低和粒子群易陷于局部的缺点,提出了混沌协同人工鱼粒子群混合算法(CCAFSAPSO)。该算法采取AFSA、PSO的全局并行搜索与模拟退火算法(SA)的局部串行搜索机制相结合的搜索方式,并用混沌映射的遍历性和模拟退火算法的突跳功能,克服了AFSA、PSO的收敛速度、求解精度和易陷于局部最优的不足。典型函数测试进一步表明CCAFSAPSO算法和同类算法相比,收敛速度更快、求解精度较高。最后将算法应用于化工数据处理,获得满意效果。  相似文献   

4.
粒子群优化算法是一种进化计算技术。提出一种基于混沌思想的模糊自适应参数策略的粒子群优化算法,它利用模糊策略较强的适应能力及混沌运动遍历性、随机性等特点,对标准粒子群优化算法进行了改进,并证明了算法的收敛性。对几种典型测试函数的测试结果表明,模糊自适应参数策略的引入,有效提高了算法收敛的速度,且混沌思想改善了对多维空间的全局搜索能力,能有效避免早熟现象。  相似文献   

5.
混沌粒子群优化算法研究   总被引:8,自引:0,他引:8  
利用混沌运动的遍历性、随机性和规律性等特点,提出一种求解优化问题的混沌粒子群优化(CPSO)算法.该算法的基本思想是采用混沌初始化进行改善个体质量和利用混沌扰动避免搜索过程陷入局部极值.典型复杂函数优化仿真结果表明该方法是一种较简单有效的算法.  相似文献   

6.
为了快速有效地确定线性二次最优控制(linear quadratic regulator,LQR)问题中的加权矩阵Q和R,针对主动悬架LQR控制器权系数设计问题,提出一种改进的教与学优化算法进行LQR优化设计。算法对基本教与学优化算法中的"教"与"学"阶段进行了进一步的改进,同时提出一种"自我学习"策略。通过仿真实验表明,和基本教与学算法、粒子群算法、遗传算法相比,本文算法在对主动悬架LQR控制器优化时,具有收敛速度快,求解精度高和稳定性强等优势。  相似文献   

7.
针对樽海鞘群算法求解精度不高的缺点,提出一种混沌精英质心拉伸机制的樽海鞘群算法。引入改进的Tent混沌序列生成初始种群,以增加初始个体的多样性;选择最优个体采用精英质心拉伸机制,可增强全局搜索能力。将改进算法在12个典型复杂函数和CEC2014函数优化问题上进行仿真实验,并同经典的遗传算法和粒子群算法进行对比。结果表明,混沌精英质心拉伸机制的樽海鞘群算法具有更好的全局搜索能力,寻优精度比标准算法有所增强。在求解高维和多峰测试函数上,改进算法拥有更好的性能。  相似文献   

8.
粒子群优化算法的收敛性分析及其混沌改进算法   总被引:15,自引:2,他引:15  
分析了粒子群优化算法的收敛性,指出它在满足收敛性的前提下种群多样性趋于减小,粒子将会因速度降低而失去继续搜索可行解的能力;提出混沌粒子群优化算法,该算法在满足收敛性的条件下利用混沌特性提高种群的多样性和粒子搜索的遍历性,将混沌状态引入到优化变量使粒子获得持续搜索的能力.实验结果表明混沌粒子群优化算法是有效的,与粒子群优化算法、遗传算法、模拟退火相比,特别是针对高维、多模态函数优化问题取得了明显改善.  相似文献   

9.
为了求解约束优化问题,提出了一种融合粒子群的教与学算法。算法采用了一种自适应的教学因子,使得算法的搜索性能可以自适应的调整。引入了自我学习和相互学习的学习模式,使得信息交流更加多样化,增强了算法的全局搜索能力。最后根据适应度值将整个种群分为两个子种群,对适应度值差的子种群采用粒子群算法以提升收敛性能,对适应度值优的子种群采用教与学优化算法以增强种群的多样性,通过两种算法的优势互补,提升了算法的整体优化性能。通过在22个标准测试函数的实验和与其它3种算法的比较表明,融合粒子群的教与学算法求解精度高,收敛速度快,它是一种可行、高效的优化算法。  相似文献   

10.
混沌粒子群算法及其在优化设计中的应用   总被引:1,自引:0,他引:1  
针对粒子群算法易早熟收敛的局限性,提出了一种基于Hénon 映射的混沌粒子群优化(CPSO)算法。该算法采用Hénon 映射,利用种群适应度方差进行早熟收敛判断,根据群体早熟收敛程度和个体适应值来调整惯性权重。仿真实验表明,改进后的混沌粒子群优化算法使收敛速度加快,且不易陷入局部极值点。  相似文献   

11.
一种混沌粒子群嵌入优化算法及其仿真   总被引:1,自引:0,他引:1  
为克服混沌粒子群优化(CPSO)算法由于采用随机数作为算法参数而不能保证种群多样性和优化遍历性的缺陷,通过将混沌变量嵌入到常规粒子群优化算法(PSO)中,使PSO算法中的惯性权值和随机数用混沌随机序列来替代,提出了一种新的混沌粒子群嵌入优化算法(CEPSO),以充分利用混沌运动的随机性、遍历性克服粒子群优化算法容易陷入局部最优的缺点.通过复杂多维函数的寻优测试,验证了本算法的有效性,并将仿真结果与混沌粒子群优化算法进行比较,证明了CEPSO算法更具有较强的全局搜索能力和收敛速度.  相似文献   

12.
一种随机粒子群算法及应用   总被引:2,自引:0,他引:2  
为提高粒子群算法的优化效率,在分析量子粒子群优化算法的基础上,提出了一种随机粒子群优化算法。该算法只有一个控制参数,搜索步长由一个随机变量的取值动态决定,通过合理设计控制参数的取值,实现对目标位置的跟踪。标准测试函数极值优化和聚类优化的实验结果表明,与量子粒子群和普通粒子群算法相比,该算法在优化能力和优化效率两方面都有改进。  相似文献   

13.
针对舰员对装备维修能力不足的情况,论文提出了一种能够应用于便携式故障诊断仪中的故障树诊断算法.首先通过对混沌自适应粒子群算法的参数选择进行优化,使粒子能够在全局范围内进行搜索,克服了其易陷入局部最优的缺点,其次将其应用于故障树诊断算法中,并通过仿真试验证明了该方法的有效性.  相似文献   

14.
针对基本黑猩猩优化算法存在的依赖初始种群、易陷入局部最优和收敛精度低等问题,提出一种多策略黑猩猩优化算法EOSMICOA(chaotic elite opposition-based simple method improved COA)。在EOSMICOA算法中,利用混沌精英反向学习策略对黑猩猩个体位置进行初始化,提高种群的多样性和质量,同时在位置更新过程中利用单纯形法和群个体记忆机制对较差个体进行改进,进一步提高算法的局部开发能力和勘探能力,以及算法的寻优精度。为验证改进算法的寻优能力,将EOSMICOA算法与多个智能算法对20个复杂函数进行对比实验,结果表明EOSMICOA在收敛精度、寻优速度等方面都有明显优势。最后,将EOSMICOA与当前最新改进算法应用于焊接梁设计中,对比结果表明EOSMICOA可以更有效地应用于工程设计优化问题。  相似文献   

15.
肖红  李盼池 《信息与控制》2016,45(2):157-164
为提高量子行为粒子群算法的优化能力,提出了一种改进的算法.该算法也采用量子势阱作为寻优机制,但提出了新的势阱中心建立方法.在每步迭代中,首先计算粒子适应度,然后取前K个适应度最好的粒子作为候选集.采用轮盘赌策略在候选集中选择一个粒子作为势阱中心,调整其它粒子向势阱中心移动.在优化过程中,通过使K值单调下降,获得探索与开发的平衡.将提出的算法应用于标准函数极值优化和量子衍生神经网络权值优化,实验结果表明提出算法的优化能力比原算法确有明显提高.  相似文献   

16.
变尺度混沌优化方法及其应用   总被引:171,自引:12,他引:171  
张彤  王宏伟 《控制与决策》1999,14(3):285-288
基于混沌变量,提出一种变尺度混沌优化方法,该方法不断缩小优化变量的搜索空间并不断提高搜索精度,从而有较高的搜索效率,应用该方法对6个测试函数进行优化计算得到了满意的效果。  相似文献   

17.
一种混沌粒子群算法   总被引:1,自引:0,他引:1  
针对传统的粒子群算法易陷入局部最小,且算法后期的粒子速度下降过快而失去搜索能力等缺陷,本文提出了一种基于混沌思想的新型粒子群算法。该算法通过生成混沌序列的方式产生惯性权重取代传统惯性权重线性递减的方案,使粒子速度呈现多样性的特点,从而提高算法的全局搜索能力;根据算法中粒子群体的平均粒子速度调节惯性权重,防止粒子速度过早降低而造成的搜索能力下降的问题;最后通过引入粒子群算法系统模型稳定时惯性权重和加速系数之间的约束关系,增强了粒子群算法的局部搜索能力。对比仿真实验表明,本文所提改进的混沌粒子群算法较传统粒子群算法具有更好的搜索性能。  相似文献   

18.
混沌优化方法及其应用*   总被引:360,自引:13,他引:360  
利用混沌运动的遍历性、随机性、“规律性”等特点,本文提出了一种混沌优化方法(COA)。用混沌优化方法对一类连续复杂对象的优化问题进行优化,其效率比一些目前广泛应用的随机优化方法如SAA,CA等要高得多,而且使用方便。  相似文献   

19.
为提高混沌优化搜索结果的精度,在以粒子群算法进行全局搜索的基础上,根据全局搜索结果利用混沌优化进行局部搜索,实现在全局范围上搜索最优值.分析局部混沌搜索方法,设计基于混沌局部搜索的粒子群算法的流程,利用混沌优化进行粒子群局部搜索以跳出局部最优搜索区域,避免陷入局部极小值和实现在全局范围上搜索目标函数的最优值.以RMSE...  相似文献   

20.
霍星  张飞  邵堃  檀结庆 《软件学报》2021,32(11):3452-3467
元启发式算法自20世纪60年代提出以后,由于其具有可以有效地减少计算量、提高优化效率等优点而得到了广泛应用.该类算法以模仿自然界中各类运行机制为特点,具有自我调节的特征,解决了诸如梯度法、牛顿法和共轭下降法等这些传统优化算法计算效率低、收敛性差等缺点,在组合优化、生产调度、图像处理等方面均有很好的效果.提出了一种改进的元启发式优化算法——NBAS算法.该算法通过将传统天牛须算法(BAS)离散化得到二进制离散天牛须算法(BBAS),并与原始天牛须算法进行混合得出.算法平衡了局部与全局搜索,有效地弥补了算法容易陷入局部最优的不足.为了验证NBAS算法的有效性,将NBAS算法与二维K熵算法结合,提出了一种快速、准确的NBAS-K熵图像分割算法.该方法解决了优化图像阈值分割函数的优化算法易陷入局部最优、算法寻优个体数多、设计复杂度高所导致的计算量大、耗时长等问题.NBAS-K熵算法与BAS-K熵算法、BBAS-K熵算法、遗传K熵算法(GA-K熵)、粒子群K熵算法(PSO-K熵)和蚱蜢K熵算法(GOA-K熵)在Berkeley数据集、人工加噪图像以及遥感图像上的实验结果表明,该分割方法不仅具有较好的抗噪性能,而且具有较高的精度和鲁棒性,能够较为有效地实现复杂图像分割.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号