共查询到19条相似文献,搜索用时 62 毫秒
1.
针对柴油生产过程中的加氢精制与调合优化问题,建立加工和库存成本优化模型,采用改进粒子群算法进行计算。通过对某炼油厂一个月的柴油生产数据进行测试,结果表明该算法有较好的应用效果,对柴油排产有一定的指导作用。 相似文献
2.
针对基本粒子群(PSO)算法不能较好地解决旅行商优化问题(TSP),分析了基本粒子群算法的优化机理,在新定义粒子群进化方程中进化算子的基础上利用混沌运动的随机性、遍历性等特点,提出一种结合混沌优化和粒子群算法的改进混沌粒子群算法.该算法对惯性权重进行自适应调整,引入混沌载波调整搜索策略避免陷入局部最优,形成一种同时满足全局和局部寻优搜索的混合离散粒子群算法,使其适合解决TSP此类组合优化问题.利用MATLAB对其进行了仿真.仿真结果说明此算法的搜索精度、收敛速度及优化效率均较优,证明了此算法在TSP中应用的有效性,且为求解TSP提供了一种参考方法. 相似文献
3.
针对基本人工鱼群算法(AFSA)收敛速度较慢、精度较低和粒子群易陷于局部的缺点,提出了混沌协同人工鱼粒子群混合算法(CCAFSAPSO)。该算法采取AFSA、PSO的全局并行搜索与模拟退火算法(SA)的局部串行搜索机制相结合的搜索方式,并用混沌映射的遍历性和模拟退火算法的突跳功能,克服了AFSA、PSO的收敛速度、求解精度和易陷于局部最优的不足。典型函数测试进一步表明CCAFSAPSO算法和同类算法相比,收敛速度更快、求解精度较高。最后将算法应用于化工数据处理,获得满意效果。 相似文献
4.
5.
针对樽海鞘群算法求解精度不高的缺点,提出一种混沌精英质心拉伸机制的樽海鞘群算法.引入改进的Tent混沌序列生成初始种群,以增加初始个体的多样性;选择最优个体采用精英质心拉伸机制,可增强全局搜索能力.将改进算法在12个典型复杂函数和CEC2014函数优化问题上进行仿真实验,并同经典的遗传算法和粒子群算法进行对比.结果表明... 相似文献
6.
混沌粒子群优化算法研究 总被引:8,自引:0,他引:8
利用混沌运动的遍历性、随机性和规律性等特点,提出一种求解优化问题的混沌粒子群优化(CPSO)算法.该算法的基本思想是采用混沌初始化进行改善个体质量和利用混沌扰动避免搜索过程陷入局部极值.典型复杂函数优化仿真结果表明该方法是一种较简单有效的算法. 相似文献
7.
8.
9.
为了求解约束优化问题,提出了一种融合粒子群的教与学算法。算法采用了一种自适应的教学因子,使得算法的搜索性能可以自适应的调整。引入了自我学习和相互学习的学习模式,使得信息交流更加多样化,增强了算法的全局搜索能力。最后根据适应度值将整个种群分为两个子种群,对适应度值差的子种群采用粒子群算法以提升收敛性能,对适应度值优的子种群采用教与学优化算法以增强种群的多样性,通过两种算法的优势互补,提升了算法的整体优化性能。通过在22个标准测试函数的实验和与其它3种算法的比较表明,融合粒子群的教与学算法求解精度高,收敛速度快,它是一种可行、高效的优化算法。 相似文献
10.
基于混沌搜索的粒子群优化算法 总被引:28,自引:6,他引:28
粒子群优化算法(PSO)是一种有效的随机全局优化技术。文章把混沌优化搜索技术引入到PSO算法中,提出了基于混沌搜索的粒子群优化算法。该算法保持了PSO算法结构简单的特点,改善了PSO算法的全局寻优能力,提高的算法的收敛速度和计算精度。仿真计算表明,该算法的性能优于基本PSO算法。 相似文献
11.
为了解决金豺优化算法种群多样性差、收敛速度慢、易陷入局部最优等问题,提出了一种多策略强化的金豺优化算法(strengthening golden jackal optimization,SGJO).首先,采用混沌精英池策略生成精英种群以增强种群多样性并提高初始解质量;然后利用自适应扰动因子更新个体位置以扩大算法的寻优范围;最后,基于种群内个体差异引入柯西高斯突变策略,以解决算法易陷入局部最优的难题且有效提高了收敛速度.通过在基准测试函数与CEC2021测试函数上进行策略有效性实验,并与其他群智能优化算法对比实验来验证SGJO算法的寻优性能,通过Wilcoxon秩和检验与汽车侧面碰撞优化问题来验证SGJO算法的稳健性和有效性.实验结果表明,多策略强化的金豺优化算法有效增强了算法的寻优能力及收敛速度,与其他算法相比具有一定的优越性. 相似文献
12.
针对黑猩猩优化算法存在易陷入局部最优、收敛速度慢、寻优精度低等缺陷,提出混合改进策略的黑猩猩优化算法(SLWChOA).首先,利用Sobol序列初始化种群,增加种群的随机性和多样性,为算法全局寻优奠定基础;其次,引入基于凸透镜成像的反向学习策略,将其应用到当前最优个体上产生新的个体,提高算法的收敛精度和速度;同时,将水波动态自适应因子添加到攻击者位置更新处,增强算法跳出局部最优的能力;最后,通过10个基准测试函数、Wilcoxon秩和检验以及部分CEC2014函数进行仿真实验来评价改进算法的寻优性能,实验结果表明,所提算法在寻优精度、收敛速度和鲁棒性上均较对比算法有较大提升.另外,通过一个机械优化设计实验进行测试分析,进一步验证了SLWChOA的可行性和适用性. 相似文献
13.
对二进制布尔型粒子群优化算法提出改进,通过在其速度更新公式中引入扰动因子避免粒子过早的陷入局部极值,提出两种调整惯性权重和学习因子取1的概率的策略以平衡算法的收敛和发散,分别是按照粒子相似性自适应调整和线性调整,由此得到两种带扰动因子的布尔型粒子群优化算法。4个基准测试函数的对比,实验结果表明了两种改进算法的有效性和优良性能。 相似文献
14.
为提高黑猩猩优化算法的收敛速度、求解精度和局部极值逃逸能力,提出一种引入人工偏好权重的混合型黑猩猩优化算法(HChOA).首先,结合ChOA实际设计新的非线性收敛因子平衡算法全局和局部搜索能力;其次,在黑猩猩群体中引入“相异度”的概念和“趋异斥似”的人工偏好权重,以此优化黑猩猩位置更新公式,增强迭代末期种群多样性的同时加快算法收敛速度;最后,提出一种改进的算术优化算法(IAOA)并融入ChOA中,抽取部分黑猩猩个体执行IAOA优化策略,避免因领导者陷入局部最优而导致群体搜索停滞时出现早熟收敛现象.通过8个标准测试函数在多种维度下的数值对比实验以及1个工程设计问题的求解,综合分析验证了HChOA具有显著的优越性、稳定性和鲁棒性,且具备工程应用价值. 相似文献
15.
一种非线性权重的自适应粒子群优化算法 总被引:2,自引:1,他引:1
针对粒子群优化算法中出现早熟和不收敛问题,分析了基本PSO算法参数对其优化性能的影响,提出了基于非线性权重的自适应粒子群优化算法(NWAPSO)。在优化过程中,惯性权重随迭代次数非线性变化,改进的算法能使粒子自适应地改变搜索速度进行搜索,并与基本粒子群算法以及其他改进的粒子群算法进行了比较。实验结果表明,该算法在搜索精度和收敛速度等方面有明显优势。特别对于高维、多峰等复杂非线性优化问题,算法的优越性更明显。 相似文献
16.
一种基于混沌的自适应粒子群全局优化方法 总被引:1,自引:1,他引:0
充分利用粒子群优化算法的收敛速度较快及混沌运动的遍历性、随机性以及对初值的敏感性等特性;考虑到惯性因子对多样性的影响;通过引入早熟收敛程度评价机制;采用逻辑自映射函数来产生混沌序列;提出一种基于混沌思想的自适应混沌粒子群优化(ACPSO)算法;改善了粒子群优化算法摆脱局部极值点的能力;提高了算法的收敛速度和精度。仿真结果表明提出的自适应混沌粒子群优化算法的性能明显优于一般混沌粒子群优化算法。 相似文献
17.
一种混沌粒子群嵌入优化算法及其仿真 总被引:1,自引:0,他引:1
为克服混沌粒子群优化(CPSO)算法由于采用随机数作为算法参数而不能保证种群多样性和优化遍历性的缺陷,通过将混沌变量嵌入到常规粒子群优化算法(PSO)中,使PSO算法中的惯性权值和随机数用混沌随机序列来替代,提出了一种新的混沌粒子群嵌入优化算法(CEPSO),以充分利用混沌运动的随机性、遍历性克服粒子群优化算法容易陷入局部最优的缺点.通过复杂多维函数的寻优测试,验证了本算法的有效性,并将仿真结果与混沌粒子群优化算法进行比较,证明了CEPSO算法更具有较强的全局搜索能力和收敛速度. 相似文献
18.
研究了一种全新的基于自适应混沌变异粒子群的路径规划算法。该方法首先进行环境建模,利用改进的粒子群算法获得一条较优路径。在改进的粒子算法中为防止早收敛,加入自适应混沌变异操作,在加强算法局部搜索能力的同时保证搜索过程中种群的多样性。仿真实验表明,即使在复杂的环境下,利用该算法也可以规划出一条全局较优路径,且能安全避碰。 相似文献