共查询到18条相似文献,搜索用时 253 毫秒
1.
哈希表示能够节省存储空间,加快检索速度,所以基于哈希表示的跨模态检索已经引起广泛关注。多数有监督的跨模态哈希方法以一种回归或图约束的方式使哈希编码具有语义鉴别性,然而这种方式忽略了哈希函数的语义鉴别性,从而导致新样本不能获得语义保持的哈希编码,限制了检索准确率的提升。为了同时学习具有语义保持的哈希编码和哈希函数,提出一种语义保持哈希方法用于跨模态检索。通过引入两个不同模态的哈希函数,将不同模态空间的样本映射到共同的汉明空间。为使哈希编码和哈希函数均具有较好的语义鉴别性,引入了语义结构图,并结合局部结构保持的思想,将哈希编码和哈希函数的学习融合到同一个框架,使两者同时优化。三个多模态数据集上的大量实验证明了该方法在跨模态检索任务的有效性和优越性。 相似文献
2.
目的 基于哈希的跨模态检索方法因其检索速度快、消耗存储空间小等优势受到了广泛关注。但是由于这类算法大都将不同模态数据直接映射至共同的汉明空间,因此难以克服不同模态数据的特征表示及特征维度的较大差异性,也很难在汉明空间中同时保持原有数据的结构信息。针对上述问题,本文提出了耦合保持投影哈希跨模态检索算法。方法 为了解决跨模态数据间的异构性,先将不同模态的数据投影至各自子空间来减少模态“鸿沟”,并在子空间学习中引入图模型来保持数据间的结构一致性;为了构建不同模态之间的语义关联,再将子空间特征映射至汉明空间以得到一致的哈希码;最后引入类标约束来提升哈希码的判别性。结果 实验在3个数据集上与主流的方法进行了比较,在Wikipedia数据集中,相比于性能第2的算法,在任务图像检索文本(I to T)和任务文本检索图像(T to I)上的平均检索精度(mean average precision,mAP)值分别提升了6%和3%左右;在MIRFlickr数据集中,相比于性能第2的算法,优势分别为2%和5%左右;在Pascal Sentence数据集中,优势分别为10%和7%左右。结论 本文方法可适用于两个模态数据之间的相互检索任务,由于引入了耦合投影和图模型模块,有效提升了跨模态检索的精度。 相似文献
3.
哈希检索具有存储消耗低、查询速度快等优点,被广泛应用于跨模态检索研究,其中基于深度学习的跨模态哈希方法是热点研究问题.大多数深度哈希方法通常在多模态数据的特征关联性学习过程中忽略了数据内容的潜在相关性和语义判别性,从而导致哈希码的关联性不强,容易造成原始数据特征和神经网络特征的不兼容问题.针对以上问题,本文提出一种图像... 相似文献
4.
针对大多数跨模态哈希方法采用二进制矩阵表示相关程度,因此无法捕获多标签数据之间更深层的语义信息,以及它们忽略了保持语义结构和数据特征的判别性等问题,提出了一种基于多级语义的判别式跨模态哈希检索算法——ML-SDH.所提算法使用多级语义相似度矩阵发现跨模态数据中的深层关联信息,同时利用平等指导跨模态哈希表示在语义结构和判... 相似文献
5.
针对网络上出现越来越多的多模态数据,如何在海量数据中检索不同模态的数据成为一个新的挑战.哈希方法把数据映射到Hamming空间,大大降低了计算复杂度,为海量数据的跨模态检索提供了一条有效的路径.然而,大部分现存方法生成的哈希码不包含任何语义信息,从而导致算法性能的下降.为了解决这个问题,本文提出一种基于映射字典学习的跨模态哈希检索算法.首先,利用映射字典学习一个共享语义子空间,在子空间保持数据模态间的相似性.然后,提出一种高效的迭代优化算法得到哈希函数,但是可以证明问题的解并不是唯一的.因此,本文提出通过学习一个正交旋转矩阵最小化量化误差,得到性能更好的哈希函数.最后,在两个公开数据集上的实验结果说明了该算法优于其他现存方法. 相似文献
6.
7.
针对现有哈希方法在特征学习过程中无法区分各区域特征信息的重要程度和不能充分利用标签信息来深度挖掘模态间相关性的问题,提出了自适应混合注意力深度跨模态哈希检索(AHAH)模型。首先,通过自主学习得到的权重将通道注意力和空间注意力有机结合来强化对特征图中相关目标区域的关注度,同时弱化对不相关目标区域的关注度;其次,通过对模态标签进行统计分析,并使用所提出的相似度计算方法将相似度量化为0~1的数字以更精细地表示模态间的相似性。在4个常用的数据集MIRFLICKR-25K、NUS-WIDE、MSCOCO和IAPR TC-12上,当哈希码长度为16 bit时,与最先进的方法多标签语义保留哈希(MLSPH)相比,所提方法的检索平均准确率均值(mAP)分别提高了2.25%、1.75%、6.8%和2.15%。此外,消融实验和效率分析也证明了所提方法的有效性。 相似文献
8.
为了解决跨模态检索算法检索准确率较低、训练时间较长等问题,文中提出联合哈希特征和分类器学习的跨模态检索算法(HFCL).采用统一的哈希码描述语义相同的不同模态数据.在训练阶段,利用标签信息学习具有鉴别性的哈希码.第二阶段基于生成的鉴别性哈希码,采用核逻辑回归学习各模态的哈希函数.在测试阶段,给定任意一个模态查询样本,利用学习的哈希函数生成哈希特征,从数据库中检索与之语义相关的另一模态数据.在3个公开数据集上的实验验证HFCL的有效性. 相似文献
9.
由于不同模态数据之间的异构性以及语义鸿沟等特点,给跨模态数据分析带来巨大的挑战.本文提出了一个新颖的相似度保持跨模态哈希检索算法.利用模态内数据相似性结构使得模态内相似的数据具有相似的残差,从而保证学习到的哈希码能够保持模态内数据的局部结构.同时利用模态间数据的标签,使得来自于不同模态同时具有相同标签的数据对应的哈希码... 相似文献
10.
近年来,各种类型的媒体数据,如音频、文本、图像和视频,在互联网上呈现爆发式增长,不同类型的数据通常用于描述同一事件或主题。跨模态检索提供了一些有效的方法,可以为任何模态的给定查询搜索不同模态的语义相关结果,使用户能够获得有关事件/主题的更多信息,从而达到以一种模态数据检索另外一种模态数据的效果。随着数据检索需求以及各种新技术的发展,单一模态检索难以满足用户需求,研究者提出许多跨模态检索的技术来解决这个问题。梳理近期跨模态检索领域研究者的研究成果,简要分析传统的跨模态检索方法,着重介绍近五年研究者提出跨模态检索方法,并对其性能表现进行对比;总结现阶段跨模态检索研究过程中面临的问题,并对后续发展做出展望。 相似文献
11.
跨模态检索可以通过一种模态检索出其他模态的信息,已经成为大数据时代的研究热点。研究者基于实值表示和二进制表示两种方法来减小不同模态信息的语义差距并进行有效的相似度对比,但仍会有检索效率低或信息丢失的问题。目前,如何进一步提高检索效率和信息利用率是跨模态检索研究面临的关键挑战。介绍了跨模态检索研究中基于实值表示和二进制表示两种方法的发展现状;分析对比了包含两种表示技术下以建模技术和相似性对比为主线的五种跨模态检索方法:子空间学习、主题统计模型学习、深度学习、传统哈希和深度哈希;对最新的多模态数据集进行总结,为相关的研究和工程人员提供有价值的参考资料;分析了跨模态检索面临的挑战并指出了该领域未来研究方向。 相似文献
12.
随着不同模态的数据在互联网中的飞速增长,跨模态检索逐渐成为了当今的一个热点研究问题.哈希检索因其快速、有效的特点,成为了大规模数据跨模态检索的主要方法之一.在众多图像-文本的深度跨模态检索算法中,设计的准则多为尽量使得图像的深度特征与对应文本的深度特征相似.但是此类方法将图像中的背景信息融入到特征学习中,降低了检索性能... 相似文献
13.
随着深度神经网络的兴起,多模态学习受到广泛关注.跨模态检索是多模态学习的重要分支,其目的在于挖掘不同模态样本之间的关系,即通过一种模态样本来检索具有近似语义的另一种模态样本.近年来,跨模态检索逐渐成为国内外学术界研究的前沿和热点,是信息检索领域未来发展的重要方向.首先,聚焦于深度学习跨模态图文检索研究的最新进展,对基于... 相似文献
14.
In the era of big data rich in We Media, the single mode retrieval system has been unable to meet people’s demand for information retrieval. This paper proposes a new solution to the problem of feature extraction and unified mapping of different modes: A Cross-Modal Hashing retrieval algorithm based on Deep Residual Network (CMHR-DRN). The model construction is divided into two stages: The first stage is the feature extraction of different modal data, including the use of Deep Residual Network (DRN) to extract the image features, using the method of combining TF-IDF with the full connection network to extract the text features, and the obtained image and text features used as the input of the second stage. In the second stage, the image and text features are mapped into Hash functions by supervised learning, and the image and text features are mapped to the common binary Hamming space. In the process of mapping, the distance measurement of the original distance measurement and the common feature space are kept unchanged as far as possible to improve the accuracy of Cross-Modal Retrieval. In training the model, adaptive moment estimation (Adam) is used to calculate the adaptive learning rate of each parameter, and the stochastic gradient descent (SGD) is calculated to obtain the minimum loss function. The whole training process is completed on Caffe deep learning framework. Experiments show that the proposed algorithm CMHR-DRN based on Deep Residual Network has better retrieval performance and stronger advantages than other Cross-Modal algorithms CMFH, CMDN and CMSSH. 相似文献
15.
16.
甲骨文字图像可以分为拓片甲骨文字与临摹甲骨文字两类. 拓片甲骨文字图像是从龟甲、兽骨等载体上获取的原始拓片图像, 临摹甲骨文字图像是经过专家手工书写得到的高清图像. 拓片甲骨文字样本难以获得, 而临摹文字样本相对容易获得. 为了提高拓片甲骨文字识别的性能, 本文提出一种基于跨模态深度度量学习的甲骨文字识别方法, 通过对临摹甲骨文字和拓片甲骨文字进行共享特征空间建模和最近邻分类, 实现了拓片甲骨文字的跨模态识别. 实验结果表明, 在拓片甲骨文字识别任务上, 本文提出的跨模态学习方法比单模态方法有明显的提升, 同时对新类别拓片甲骨文字也能增量识别. 相似文献
17.
深度学习的快速发展和关联学习的深度研究,使得跨模态检索的性能有了很大提升.跨模态检索研究面临的挑战是:不同模态的数据在高层语义上具有关联关系,但在底层特征上存在异构鸿沟.现有方法主要通过单个相关性约束将不同模态的特征映射到具有一定相关性的特征空间中来解决底层特征上的异构鸿沟问题.然而,表征学习表明,不同层次的特征在帮助模型最终性能的提升上都会起作用.所以,现有方法学习到的单一特征空间的关联性是弱的,即该特征空间可能不是最优的检索空间.为解决该问题,提出了基于关联特征传播的跨模态检索模型,其基本思想是强化深度网络各层之间的关联性,即前一层具有一定关联的特征经过非线性变化传到后一层,有利于找到使2种模态关联性更强的特征空间.通过在Wikipedia,Pascal数据集上的大量实验验证得到,该方法提升了平均精度均值. 相似文献
18.
基于增量学习支持向量机的音频例子识别与检索 总被引:5,自引:0,他引:5
音频例子识别与检索的主要任务是构造一个良好的分类学习机,而在构造过程中,从含有冗余样本的训练库中选择最佳训练例子、节省学习机的训练时间是构造分类机面临的一个挑战,尤其是对含有大样本训练库音频例子的识别.由于支持向量是支持向量机中的关键例子,提出了增量学习支持向量机训练算法.在这个算法中,训练样本被分成训练子库按批次进行训练,每次训练中,只保留支持向量,去除非支持向量.与普通和减量支持向量机对比的实验表明,算法在显著减少训练时间前提下,取得了良好的识别检索正确率. 相似文献