首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
目前大多数方面级情感分类研究都忽略了方面词的建模,以及方面词与上下文之间的交互信息,并且难以体现语法上与方面词有直接联系上下文单词的重要程度。针对上述问题,提出基于方面词交互(aspect word interaction,AWI)和图卷积网络(graph convolutional network,GCN)的方面级情感分类模型(AWI-GCN)。使用双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)分别提取方面词和上下文的特征;采用GCN根据句法依存树进一步提取与方面词有直接语法联系的上下文情感特征;利用注意力机制学习方面词与上下文的交互信息,同时提取上下文中为方面词情感分类做出重要贡献的情感特征。针对3个公开数据集上的仿真实验结果表明,AWI-GCN模型相比当前代表模型取得了更好的情感分类效果。  相似文献   

2.
目前基于神经网络的方面级情感分类模型很少会考虑上下文单词与方面词之间的句法依存关系,可能会错误地将与方面词语法无关的上下文单词作为方面词的情感特征;另一方面大多数方法也忽略了上下文与方面词之间的交互信息。针对这两个问题,提出了基于双向图卷积网络(BiGCN)和交互注意力机制(IAM)的方面级情感分类模型(BiGCN-IAM),该模型在句法依存树上使用双向图卷积网络提取上下文单词和方面词之间的句法依存关系,然后使用掩码层得到特定的方面词表示;最后使用交互注意力机制学习上下文与方面词之间的交互信息,同时提取了上下文中的重要情感特征和方面词中对分类有贡献的特征。通过在五个公开数据集上的实验证明,该模型效果优于基线模型。  相似文献   

3.
方面级情感分析是一种细粒度文本情感分析技术,可以判断文本目标方面的情感倾向,被广泛应用于商品评价、教育评价等领域,可以辅助用户更全面地了解实体属性并做出精准决策。但是现有方面级情感分析技术大多存在文本句法依存关系特征以及外部知识特征提取不充分的问题,为此,利用图卷积神经网络可以处理异构数据的特点,构建一种语义增强的方面级文本情感分析模型。将文本的词嵌入向量输入双向门控循环神经网络以提取文本和目标方面词的上下文语义信息,依据句法依存关系类型构建加权句法依存图,根据文本单词和外部知识库构建知识子图,使用图卷积神经网络处理加权句法依存图和知识子图,从而获取融合文本句法结构信息的文本特征和体现外部知识信息的目标方面特征,在此基础上,拼接两组特征向量完成情感极性分类。实验结果表明,在Laptop14、Restaurat14和Restaurat15数据集上,该模型的F1值分别达到77.34%、76.58%和68.57%,相比ATAELSTM、TD-LSTM、ASGCN等基线模型,其F1值分别平均提高7.28%、5.71%和6.28%,所提模型通过提取文本句法依存关系特征以及外部知识特征获得了更好的...  相似文献   

4.
针对方面级情感分析方法准确率难以达到实用效果的问题,设计一种融合注意力机制并同时考虑句子句法结构和语料库共现信息的A-LSGCN模型,以便提高预测句子中特定属性情感极性的准确率;首先,联合多头注意力机制和词汇-句法图卷积,对属性的记忆向量和历史上下文内存向量进行叠加与更新,从而获得目标属性词及其上下文之间的关系;其次,为减少冗余对分类干扰,并充分学习通用语法知识,采用句法依存图神经网络提取句法结构信息,直接匹配属性及其情感表达,经网络分类计算最终得到特定属性对应的情感极性;最后在多个SemEval数据集上进行对比试验,其中Laptop14 数据集的MF1分数和准确率分别提升了1.1%、5.5%。  相似文献   

5.
方面级情感分类可发现语句在不同方面隐藏的情感特征.文中基于特定方面的图卷积网络的框架,构建基于上下文保持能力的方面级情感分类模型.在图卷积层中引入上下文门控单元,整合前一层输出中的有用信息.在基于图卷积网络的模型中加入多粒度注意力计算模块,描述方面词与上下文在情感表达上的相互关系.在5个公开数据集上的实验表明,文中模型...  相似文献   

6.
目前,基于卷积神经网络和循环神经网络的方面级情感分析研究工作较少同时考虑到句子的句法结构和词语的语法距离,且卷积神经网络和循环神经网络无法有效地处理图结构的数据.针对上述问题,提出了一种基于距离与图卷积网络的方面级情感分类模型.首先,为该模型设计了一个具有残差连接的双层双向长短期记忆网络,用于提取句子的上下文信息;然后,根据句法依赖树得到词语的语法距离权重,并根据词语之间的句法关系构建邻接矩阵;最后,采用图卷积网络结合句子的上下文信息、语法距离权重和邻接矩阵提取方面的情感特征.实验结果表明,模型是有效的且可获得更好的性能.  相似文献   

7.
方面级情感分析的目的在于判断文本在不同方面的情感极性.以往的研究大多集中在基于无权的句法依存树来构建网络模型.由于方面词和非方面词的句法依存关系对于目标情感的重要性是不同的,提出了基于权重增强并结合图卷积的神经网络模型(AW-IGCN).通过带权矩阵来储存更完整的句法结构,同时利用GRU来获得上下文信息,并输入到改良的...  相似文献   

8.
在目前方面级别情感分类的研究方法中,大部分是基于循环神经网络或单层注意力机制等方法,忽略了位置信息对于特定方面词情感极性的影响,并且此类方法编码语句和方面词时直接采用了拼接或者相乘的方式,导致处理长句子时可能会丢失信息以及无法捕获深层次情感特征。为了解决上述问题,该文提出了基于句法结构树和混合注意力网络的模型,其基本思想是将基于句法结构树构建的位置向量作为辅助信息,并提出混合注意力网络模型来提取句子在给定方面词下的情感极性。所以该文设计了浅层和深层网络,并分别构建位置注意力机制和交互型多头注意力机制获取句子中和方面词相关的语义信息。实验结果表明:大多数情况下,该模型在SemEval 2014公开数据集中的Restaurant和Laptop以及ACL14 Twitter上的表现优于相关基线模型,可以有效地识别不同方面的情感极性。  相似文献   

9.
当前大多数基于图卷积网络的方面级情感分析方法利用文本的句法知识、语义知识、情感知识构建文本依赖,但少有研究利用文本语序知识构建文本依赖,导致图卷积网络不能有效地利用文本语序知识引导方面项学习上下文情感信息,从而限制了其性能。针对上述问题,提出基于语序知识的双通道图卷积网络(dual-channel graph convolutional network with word-order knowledge, WKDGCN)模型,该模型由语序图卷积网络(word-order graph convolutional network, WoGCN)和情感知识结合语义知识增强的句法图卷积网络(sentiment and attention-enhanced graph convolutional network, SAGCN)组成。具体地,WoGCN基于文本的语序知识构建图卷积网络,由文本的语序依赖引导方面项特征学习上下文情感信息;SAGCN利用SenticNet中的情感知识结合注意力机制增强句法依赖,利用增强后的句法依赖构建图卷积网络,以此引导方面项特征学习上下文情感信息;最后融合两个图卷积网...  相似文献   

10.
方面级情感分析是一项细粒度的情感分类任务。近年来,依存树上的图神经网络被用于建模方面项及其意见项间的依赖关系。然而,这类方法通常具有高度依赖依存树解析质量的缺点。同时,大多数现有研究着重关注语法信息,忽视了情感知识在建模特定方面与上下文之间情感依赖关系中的作用。为解决以上问题,设计并提出了用于方面级情感分析的情感增强双图卷积网络。模型基于依存树与注意力机制建立双通道结构,在更为准确、高效地捕捉方面与上下文间语法与语义关联的同时减轻了模型对依存树的依赖程度。此外,模型引入情感知识用于增强图结构,帮助模型更好地提取特定方面的情感依赖关系。模型在3个公开基准数据集Rest14、Lap14、Twitter上的准确率分别达到了84.32%、78.20%、76.12%,接近或超越目前最先进的性能。实验表明,提出的方法能够合理利用语义和语法信息,在使用更少参数的情况下实现较为先进的情感分类性能。  相似文献   

11.
方面级情感分析是细粒度情感分析的一个基本子任务,旨在预测文本中给定方面或实体的情感极性。语义信息、句法信息及其交互信息对于方面级情感分析是极其重要的。该文提出一种基于图卷积和注意力的网络模型(CA-GCN)。该模型主要分为两部分,一是将卷积神经网络结合双向LSTM获取的丰富特征表示与图卷积神经网络掩码得到的方面特征表示进行融合;二是采用两个多头交互注意力融合方面、上下文和经图卷积神经网络得到的特征信息,而后接入多头自注意力来学习信息交互后句子内部的词依赖关系。与ASGCN模型相比,该模型在三个基准数据集(Twitter、Lap14和Rest14)上准确率分别提升1.06%、1.62%和0.95%,F1值分别提升1.07%、2.60%和1.98%。  相似文献   

12.
特定于某一方面的情感分类是情感分析领域中的一项细粒度任务。深层的神经网络可以更好地提取上下文特征与方面特征,同时利用Attention机制可以根据上下文特征和方面特征不同的重要性赋予相应的权重值。模型着重从提取上下文与方面特征和更好地融合上下文与方面向量入手,提出了一种混合提取与多层注意的深度神经网络。基于Bi-LSTM和CNN在提取特征方面都有显著的成效,引入两种网络的合并模型。最后,在经典的Laptop,Resteraunt和Twitter数据集上进行了验证,展示了比基准模型更好地分类效果。  相似文献   

13.
目前基于注意力机制的句子属性情感分类方法由于忽略句子中属性的上下文信息以及单词与属性间的距离特征,从而导致注意力机制难以学习到合适的注意力权重.针对该问题,提出一种基于依存树及距离注意力的句子属性情感分类模型(dependency tree and distance attention, DTDA).首先根据句子的依存树得到包含属性的依存子树,并利用双向GRU学习句子及属性的上下文特征表示;根据句子中单词和属性在依存树中的最短路径确定相应的语法距离及位置权重,同时结合相对距离构造包含语义信息和距离信息的句子特征表示,并进一步利用注意力机制生成属性相关的句子情感特征表示;最后,将句子的上下文信息与属性相关的情感特征表示合并后并通过softmax进行分类输出.实验结果表明:DTDA在国际语义评测SemEval2014的2个基准数据集Laptop和Restaurant上取得与目前最好方法相当的结果.当使用相关领域训练的词向量时,DTDA在Laptop上的精确率为77.01%,在Restaurant上的准确率为81.68%.  相似文献   

14.
随着图卷积网络的发展,图卷积网络已经应用到很多任务中,其中就包含文本分类任务.通过将文本数据表示成图数据,进而在图上应用图卷积,从而捕获文本的结构信息和单词间的长距离依赖关系获得了良好的分类效果.但将文本建模成图模型后,图卷积网络面临着文本上下文语义信息和局部特征信息表示不充分的问题.提出一种新的模型,利用双向长短时记...  相似文献   

15.
分析句子针对不同方面的情感极性,深入挖掘评论文本中的信息,为企业生产决策提供建议。针对传统方法多考虑单一层面注意力信息,且基于RNN的模型忽略了局部特征的重要性,而基于CNN的模型不能捕捉长距离依赖的信息的问题,提出了基于双重注意力机制的BG-DATT-CNN模型。在特征表示上,利用BERT对句子和方面词分别进行词向量编码,获得文本的深层语义特征。在特征提取上,设计了双重注意力机制,通过计算两类权重获得综合权重,强化文本的上下文相关特征和方面相关特征。在模型构建上,设计了BG-DATT-CNN网络,结合GRU和CNN各自的优势,Bi-GRU层捕捉文本的上下文全局特征,CNN层包括K-Max池化层和TextCNN层,通过两阶段特征提取获取分类的关键信息。在SemEval 2014数据集上的实验表明,与现有的其他模型相比,提出的模型取得了较好的效果。  相似文献   

16.
近年来,方面级情感分析吸引了越来越多学者的关注,但方面级跨领域情感分析存在没有标注数据,难以获得好的分类结果的问题。将上下文特征与方面特征进行融合,构建基于卷积神经网络和门控单元的情感分类模型,并利用少量目标领域数据集对模型进行微调来实现迁移学习,再用迁移学习后的模型对目标领域的数据进行方面级情感分析,有效解决了训练样本不足、准确率低的问题。人工标注了适用于方面级跨领域情感分析的中、英文语料,所提出的方法在中文数据集最优的F1值达到92.19%,英文数据集最优的F1值达到了86.18%,实验结果表明基于卷积神经网络的方面级跨领域情感分析方法有效提高了目标领域的情感分类准确性。  相似文献   

17.
在方面级情感分类中,常用的方法是用卷积神经网络或循环神经网络提取特征,利用注意力权重获取序列中不同词汇的重要程度.但此类方法未能很好地利用文本的句法信息,导致模型不能准确地在评价词与方面词之间建立联系.该文提出一种图卷积神经记忆网络模型(MemGCN)来解决此依赖问题.首先通过记忆网络存储文本表示与辅助信息,然后利用基...  相似文献   

18.
目前,在属性级情感分类任务上较为成熟的有标注数据集均为英文数据集,而有标注的中文数据集较少.为了能够更好地利用规模庞大但却缺乏成熟标注数据的中文语言数据集,针对跨语言属性级情感分类任务进行了研究.在跨语言属性级情感分类中,一个核心问题为如何构建不同语言的文本之间的联系.针对该问题,在传统的单语言情感分类模型的基础上,使用图神经网络模型对跨语言词-词、词-句之间的关系信息进行建模,从而有效地刻画两种语言数据集之间的联系.通过构建单语词-句之间的联系和双语词-句之间的联系,将不同语言的文本关联起来,并利用图神经网络进行建模,从而实现利用英文数据集预测中文数据集的跨语言神经网络模型.实验结果表明:相较于其他基线模型,所提出的模型在F1值指标上有着较大的提升,从而说明使用图神经网络建立的模型能够有效地应用于跨语言的应用场.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号