首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hollow core reinforced concrete columns are generally preferred in use to decrease the cost and weight/stiffnesss ratio of members, such as bridge columns and piles. With a simplified stress state assumption, strengthening a hollow core reinforced concrete column with fiber-reinforced polymer (FRP) wrapping provides a biaxial confinement to the concrete, which leads to a need of defining the effect of FRP wrapping on the strength and ductility of the hollow core reinforced concrete columns. In this study, two groups of four hollow core reinforced concrete columns (205?mm outer diameter, 56?mm hollow core diameter, and 925?mm height) were tested under concentric, eccentric (25 and 50?mm eccentricity) and bending loads to observe the effect of carbon FRP (CFRP) wrapping. All the columns had internal steel reinforcement. Half of the columns had three layers of circumferential CFRP wrapping, whereas the other half had no external confinement. Axial load-bending moment (P–M) diagrams of each group were drawn using the obtained experimental results for both groups. It was observed that, CFRP wrapped columns had higher load and moment carrying capacities than the other group. An analytical model is proposed for drawing the P–M diagram of CFRP wrapped hollow core reinforced concrete columns.  相似文献   

2.
The aim of this paper is to study the properties of high-strength concrete (HSC) circular columns confined by aramid fiber-reinforced polymer (AFRP) sheets under axial compression. A total of 60 specimens were tested, considering the following parameters: the compressive strength of concrete, the number of AFRP layers, and the form of AFRP wrapping. In addition, an analytical model for predicting the stress–strain curves is proposed based on the experimental results. Meanwhile, a three-dimensional nonlinear finite-element model with a Drucker–Prager plasticity model for the concrete core and an elastic model for the AFRP is developed by using the finite-element code ANSYS. It is demonstrated that the strength and ductility of the columns with continuous AFRP wrapping are increased greatly; whereas the strength of the columns with discontinuous AFRP wrapping is also increased, but the ductility is not always increased notably. The analytical model and the finite-element model are validated against the experimental results.  相似文献   

3.
An attractive technique for the shear strengthening of reinforced concrete beams is to provide additional web reinforcement in the form of externally bonded fiber-reinforced polymer (FRP) sheets. So far, theoretical studies concerning the FRP shear strengthening of reinforced concrete members have been rather limited. Moreover, the numerical analyses presented to date have not effectively simulated the interfacial behavior between the bonded FRP and concrete. The analysis presented here aims to capture the three-dimensional and nonlinear behavior of the concrete, as well as accurately model the bond–slip interfacial behavior. The finite-element model is applied to various strengthening strategies; namely, beams with vertical and inclined side-bonded FRP sheets, U-wrap FRP strengthening configurations, as well as anchored FRP sheets. The proposed numerical analysis is validated against published experimental results. Comparisons between the numerical predictions and test results show excellent agreement. The finite-element model is also shown to be a valuable tool for gaining insight into phenomena (e.g., slip profiles, debonding trends, strain distributions) that are difficult to investigate in laboratory tests.  相似文献   

4.
This paper describes a study on the behavior of fiber-reinforced polymer (FRP) jacketed square concrete columns subjected to eccentric loading. The effect of strain gradient on the behavior of concrete columns confined by the FRP jacket was investigated through experimental and numerical analysis methods. Nine (108 × 108 × 305 mm) square concrete column stubs with zero, one, and two plies of unidirectional carbon FRP fabric were tested under axial compressive loading. In addition to the FRP jacket thickness, the effects of various eccentricities were examined. The nonlinear finite-element analysis results were compared and validated against the experimental test results. The results show that the FRP jacket can greatly enhance the strength and ductility of concrete columns under eccentric loading and that the strain gradient reduces the retrofit efficiency of the FRP jacket for concrete columns. Therefore, a smaller enhancement factor should be used in designing FRP-jacketed columns under eccentric loading. Furthermore, the nonlinear finite-element models established in this study can be used as templates for future research work on FRP-confined concrete columns.  相似文献   

5.
In 2003, an experimental research program was initiated at the American University of Beirut with the objectives of (1) evaluating the effectiveness of external fiber-reinforced polymer (FRP) confinement in improving the bond strength of spliced reinforcement in reinforced-concrete (RC) columns and its implications on the lateral load capacity and ductility of the columns under seismic loading; and (2) establishing rational design criteria for bond strengthening of spliced reinforcement using external FRP jackets. This paper presents a discussion of recent experimental results dealing with rectangular columns and the results of a pilot study conducted on circular columns with particular emphasis on aspects related to the bond strength of the spliced column reinforcement. A nonlinear analysis model is developed for predicting the envelope load–drift response, taking into account the effect of FRP confinement on the stress–strain behavior of concrete in compression. Results predicted by the model showed excellent agreement with the test results. Design expressions of the bond strength of spliced bars in FRP-confined concrete were assessed against the current experimental data, and a criterion for seismic FRP strengthening of bond-critical regions in RC members is proposed.  相似文献   

6.
The paper aims to contribute to a better understanding of the behavior of reinforced concrete columns confined with fiber-reinforced polymer (FRP) sheets. In particular, some new insights on interaction mechanisms between internal steel reinforcement and external FRP strengthening and their influence on efficiency of FRP confinement technique are given. In this context a procedure to generate the complete stress-strain response including new analytical proposals for (1) effective confinement pressure at failure; (2) peak stress; (3) ultimate stress; (4) ultimate axial strain; and (5) axial strain corresponding to peak stress for FRP confined elements with circular and rectangular cross sections, with and without internal steel reinforcement, is presented. Interaction mechanisms between internal steel reinforcement and external FRP strengthening, shown by some experimental results obtained at the University of Padova with accurate measurements, are taken into account in the analytical model. Four experimental databases regarding FRP confined concrete columns, with circular and rectangular cross section with and without steel reinforcement, are gathered for the assessment of some of the confinement models shown in literature and the new proposed model. The proposed model shows a good performance and analytical stress-strain curves approximate some available test results quite well.  相似文献   

7.
This study concentrates on analytical evaluation of the effect of external confinement using fiber reinforced polymers (FRP) sheets on the response of concrete rectangular columns designed for gravity load only and having spliced longitudinal reinforcement at the column base. A general analytical scheme for evaluating the strength capacity and ductility of the columns under combined flexural–axial loads was developed. The analysis takes into account the bond strength degradation of the spliced reinforcement with increase in lateral load by incorporating a generalized bond stress–slip law, and considers the effect of FRP confinement on the stress–strain response of concrete material. Particular emphasis is placed in the analysis on the slip response of the spliced bars and the consequent fixed end rotation that develops at the column base. Results predicted by the analysis showed very good agreement with limited experimental data. A parametric evaluation was carried out to evaluate the effect of different design and strength parameters on the column response under lateral load. Without confinement, the columns suffered premature bond failure and, consequently, low flexural strength capacity. Confining the concrete in the columns end zone at the splice location with FRP sheets enhanced the bond strength capacity of the spliced reinforcement, increased the steel stress that can be mobilized before bond failure occurs, and consequently improved the flexural strength capacity and ductility of the columns. A general design equation, expressed as a function of the main parameters that influence the bond strength capacity between spliced steel bars and FRP confined concrete, is proposed to calculate the area of FRP sheets needed for strengthening of the subject columns.  相似文献   

8.
One disadvantage of most available stress–strain models for concrete confined with fiber-reinforced polymer (FRP) composites is that they do not take into consideration the interaction between the internal lateral steel reinforcement and the external FRP sheets. According to most structural concrete design codes, concrete columns must contain minimum amounts of longitudinal and transverse reinforcement. Therefore, concrete columns that have to be retrofitted (and therefore confined) with FRP sheets usually contain lateral steel. Hence, the retrofitted concrete column is under two actions of confinement: the action due to the FRP and that due to the steel ties. This paper presents a new designed-oriented confinement model for the axial and lateral behavior of circular concrete columns confined with steel ties, FRP composites, and both steel ties and FRP composites. Comparison with experimental results of confined concrete stress–strain curves shows good agreement between the test and predicted results.  相似文献   

9.
Lateral confinement of reinforced concrete columns can significantly increase their lateral deflection capability and load-carrying capacity. While such retrofits were initially completed using steel jackets, fiber-reinforced polymer (FRP) composites have been used successfully and extensively for seismic and blast upgrades. Numerical modeling of such structures requires the use of a concrete material model that can accurately represent the volumetric behavior of concrete under triaxial stress states, to capture the interaction between concrete expansion and the resulting stress increase in the confining jacket. Test data by Suter and Pinzelli, Karbhari and Gao, and Mirmiran and Shahawy on concrete cylinders and prisms confined by aramid, carbon, and glass FRP sheets are analyzed numerically. The concrete material model used was developed for the study of the effect of blast loading on reinforced concrete structures and was verified and validated for a variety of triaxial stress paths. The numerical analyses closely reproduce the strength enhancements observed in the test specimens for various levels of confinement. The model also confirms the observed inefficiency of low levels of lateral confinement and the superior enhancement provided by circular cross sections as compared to rectangular ones.  相似文献   

10.
This paper discusses the mechanical behavior of reinforced concrete columns wrapped with fiber-reinforced polymer (FRP) sheets. A numerical routine was developed to predict the behavior of the columns using a step-by-step technique. The routine is based on an existing model and was modified to account for confinement provided by the traditional steel as well as the external FRP wraps. Several empirical equations for the confined concrete were calibrated with results from experimental tests from different published papers. The most accurate equation was incorporated into the routine to predict the stress-strain relation of the column up to failure. A different confinement to the outer concrete cover and the inner core was used to account for the FRP wraps and the transverse steel. The model was calibrated with experimental results from different experiments on FRP-wrapped reinforced concrete columns.The model was taken one step further by using it to predict the behavior of reinforced concrete columns, with a combination of steel corrosion and CFRP wraps. The columns modeled were subjected to harsh corrosive environment over 44 months. The model successfully predicted the load deformation in both axial and circumferential directions in corroded and intact columns, both wrapped and unwrapped, with good accuracy. The analysis forms a solid foundation for accurate evaluation of the effect of corrosion and wrapping on reinforced concrete columns.  相似文献   

11.
Reinforced concrete (RC) hollow piers in bridges withstand high moment and shear demands ensured with reduced mass and lower stress on foundations compared with solid piers. Failure of hollow columns is typically affected by premature buckling of reinforcing bars and concrete cover spalling. At present, no guidelines are available for the design of their upgrade, and few research investigations can be found on hollow columns strengthened by using fiber-reinforced polymer (FRP) materials. This paper discusses an experimental program carried out on purely compressed RC hollow columns externally wrapped with glass-fiber-reinforced polymer (GFRP). Three specimens were tested: one specimen was unstrengthened and used as the benchmark; the other two specimens were GFRP-wrapped with different confining reinforcement ratios. Each specimen was designed according to dated codes (i.e., prior to 1970) accounting only for gravity loads. In particular, steel longitudinal bars cross section and steel tie-spacing were designed with the minimum amount of longitudinal reinforcement and minimum tie area at maximum spacing. Tests results highlight that the GFRP-jacket mainly provided ductility increases before low strength increments could be obtained. Refined and simplified numerical models for hollow square RC columns, previously proposed by the authors, herein extend to hollow rectangular members. Comparisons of experimental results and theoretical predictions on the basis of both refined and simplified confinement models were performed and showed good agreement. In the case of the simplified model, a value for the effective ultimate FRP strain was suggested.  相似文献   

12.
Since bridge deck slabs directly sustain repeated moving wheel loads, they are one of the most bridge elements susceptible to fatigue failure. Recently, glass fiber-reinforced polymer (FRP) composites have been widely used as internal reinforcement for concrete bridge deck slabs as they are less expensive compared to the other kinds of FRPs (carbon and aramid). However, there is still a lack of information on the performance of FRP–reinforced concrete elements subjected to cyclic fatigue loading. This research is designed to investigate the fatigue behavior and fatigue life of concrete bridge deck slabs reinforced with glass FRP bars. A total of five full-scale deck slabs were constructed and tested under concentrated cyclic loading until failure. Different reinforcement types (steel and glass FRP), ratios, and configurations were used. Different schemes of cyclic loading (accelerated variable amplitude fatigue loading) were applied. Results are presented in terms of deflections, strains in concrete and FRP bars, and crack widths at different levels of cyclic loading. The results showed the superior fatigue performance and longer fatigue life of concrete bridge deck slabs reinforced with glass FRP composite bars.  相似文献   

13.
The study presented in this paper proposes a new theoretical framework to interpret and capture the mechanics of the fiber-reinforced polymer (FRP) confinement of square reinforced concrete (RC) columns subjected to pure compressive loads. The geometrical and mechanical parameters governing the problem are analyzed and discussed. A single-parameter methodology for predicting the axial stress–axial strain curve for FRP-confined square RC columns is described. Fundamentals, basic assumptions, and limitations are discussed. A simple design example is also presented.  相似文献   

14.
Jacketing is less effective to large square/rectangular RC columns due to the inability of the rectangular-shaped jacket in restraining the dilation of concrete in the middle of a straight side. A new retrofit method is proposed in this work by fiber reinforcing the surface concrete in the middle of a straight side. Fiber reinforcing is achieved by inserting small fiber-reinforced polymer (FRP) bars into the concrete in the plastic hinge zone. The inserted FRP bars act as horizontal reinforcement to increase the ductility of the concrete in a similar way as that in normal fiber-reinforced concrete. When this fiber reinforcing technique is combined with the conventional jacketing, the concrete in all parts of a cross section may be effectively confined. In this work, experimental tests were undertaken to investigate the effectiveness of this new retrofit technique. Six half-scaled columns were tested and the test results demonstrated the effectiveness of the method.  相似文献   

15.
For members with no transverse reinforcement, numerous models have been proposed for determining shear capacity, most often based on a statistical curve fit to experimental beam test results. The shear provisions of the Canadian code (CSA) for steel-reinforced concrete, by contrast, are based on a theoretical model, the modified compression field theory. This paper demonstrates that the CSA shear provisions for steel-reinforced members can be safely applied to members with internal fiber-reinforced polymer (FRP) bars by adjusting the term EsAs in the method to ErAr. A database of 146 shear failures of specimens reinforced with carbon, glass, or aramid FRP or steel is presented and gives an average test to predicted ratio of 1.38 with a coefficient of variation (COV) of 17.2%. The CSA code equations were optimized for the typical strain range of steel-reinforced concrete and when an equation appropriate for the wider range of strains associated with FRP is used, then a better statistical result can be achieved. Application of this expression to the database resulted in an average test to predicted strength ratio of 1.15 with a COV of 14.9%. As both methods are based on a theoretical shear model that was derived for steel-reinforced concrete and since both methods work safely, it can be concluded that the use of internal FRP bars does not change the one-way shear behavior of reinforced concrete beams and slabs without stirrups.  相似文献   

16.
Steel-fiber-reinforced polymer (FRP) composite bars (SFCBs) are a novel reinforcement for concrete structures. Because of the FRP’s linear elastic characteristic and high ultimate strength, they can achieve a stable postyield stiffness even after the inner steel bar has yielded, which subsequently enables a performance-based seismic design to easily be implemented. In this study, lateral cyclic loading tests of concrete columns reinforced either by SFCBs or by ordinary steel bars were conducted with axial compression ratios of 0.12. The main variable parameters were the FRP type (basalt or carbon FRP) and the steel/FRP ratio of the SFCBs. The test results showed the following: (1)?compared with ordinary RC columns, SFCB-reinforced concrete columns had a stable postyield stiffness after the SFCB’s inner steel bar yielded; (2)?because of the postyield stiffness of the SFCB, the SFCB-reinforced concrete columns exhibited less column-base curvature demand than ordinary RC columns for a given column cap lateral deformation. Thus, reduced unloading residual deformation (i.e., higher postearthquake reparability) of SFCB columns could be achieved; (3)?the outer FRP type of SFCB had a direct influence on the performance of SFCB-reinforced concrete columns, and concrete columns reinforced with steel-basalt FRP (BFRP) composite bars exhibited better ductility (i.e., a longer effective length of postyield stiffness) and a smaller unloading residual deformation under the same unloading displacement when compared with steel-carbon FRP (CFRP) composite bar columns; (4)?the degradation of the unloading stiffness by an ordinary RC column based on the Takeda (TK) model was only suitable at a certain lateral displacement. In evaluating the reparability of important structures at the small plastic deformation stage, the TK model estimated a much smaller residual displacement, which is unsafe for important structures.  相似文献   

17.
Continuous concrete beams are structural elements commonly used in structures that might be exposed to extreme weather conditions and the application of deicing salts, such as bridge overpasses and parking garages. In such structures, reinforcing continuous concrete beams with the noncorrodible fiber-reinforced polymer (FRP) bars is beneficial to avoid steel corrosion. However, the linear-elastic behavior of FRP materials makes the ability of continuous beams to redistribute loads and moments questionable. A total of seven full-scale continuous concrete beams were tested to failure. Six beams were reinforced with glass fiber-reinforced polymer (GFRP) longitudinal bars, whereas one was reinforced with steel as control. The specimens have rectangular cross section of 200×300??mm and are continuous over two spans of 2,800?mm each. Both steel and GFRP stirrups were used as transverse reinforcement. The material, spacing, and amount of transverse reinforcement were the primary investigated parameters in this study. In addition, the experimental results were compared with the code equations to calculate the ultimate capacity. The experimental results showed that moment redistribution in FRP-reinforced continuous concrete beams is possible and is improved by increasing the amount of transverse reinforcement. Also, beams reinforced with GFRP stirrups illustrated similar performance compared with their steel-reinforced counterparts.  相似文献   

18.
The effectiveness of fiber-reinforced polymer (FRP) and textile-reinforced mortar (TRM) jackets was investigated experimentally and analytically in this study to confine old-type reinforced concrete (RC) columns with limited capacity because of bond failure at lap-splice regions. The local bond strength between lap-spliced bars and concrete was measured experimentally along the lap-splice region of six full-scale RC columns subjected to cyclic uniaxial flexure under constant axial load. The bond strength of the two column specimens tested without retrofitting was found to be in good agreement with the predictions given by two existing bond models. These models were modified to account for the contribution of composite material jacketing to the bond resistance between lap-spliced bars and concrete. The effectiveness of FRP and TRM jackets against splitting at lap splices was quantified as a function of jacket properties and geometry as well as in terms of the jacket effective strain, which was found to depend on the ratio of lap-splice length to bar diameter. Consequently, simple equations for calculating the bond strength of lap splices in members confined with composite materials (FRP or TRM) are proposed.  相似文献   

19.
The structural behavior of reinforced concrete beams strengthened with adhesively bonded fiber-reinforced plastics (FRP) is presented. The experimental work included flexural testing of 2.3-m-long concrete beams with bonded external reinforcements. The test variables included the amount of conventional (internal) reinforcement and also the type and amount of external reinforcement. For comparison, some of the beams were strengthened with bonded steel plates. Theoretical analyses included 2D nonlinear finite-element modeling incorporating a “damage” material model for concrete. In general there were reasonably good correlations between the experimental results and nonlinear finite-element models. It is suggested that the detachment of bonded external plates from the concrete, at ultimate loads, is governed by a limiting principal stress value at the concrete∕external plate interface.  相似文献   

20.
This paper studies the cross-sectional behavior of steel columns strengthened with fiber-reinforced polymers (FRPs). The composite column is constructed by wrapping the steel I-section column with epoxy-saturated glass- and carbon-FRPs (GFRP and CFRP) sheets in the transverse direction and subsequently filling the voids between the FRP and the steel with concrete. Experimental tests were performed on stub columns under axial compression including one to three CFRP wraps. A corner treatment technique, to avoid stress concentration at the corners and to improve confinement efficiency, was also investigated. A simplified analytical model was developed to predict the axial behavior of the composite columns. Experimental results showed significant enhancement in the behavior of the composite columns primarily attributable to the confinement mechanism imposed by the FRP jacket and concrete. Increasing the corner radius resulted in higher compressive strength of the confined concrete and ultimate axial strain of the composite columns. Good agreement between the analytically developed axial load-displacement relationships and the test data indicates that the model can closely simulate the cross-sectional behavior of the composite columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号