首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reinforced concrete (RC) beams and slabs can be strengthened by bonding fiber-reinforced polymer (FRP) composites to their tension face. The performance of such flexurally strengthened members can be compromised by debonding of the FRP, with debonding initiating near an intermediate crack (IC) in the member away from the end of the FRP. Despite considerable research over the last decade, reliable IC debonding strength models still do not exist. The current paper attempts to correct this situation by presenting a local deformation model that can simulate IC debonding. The progressive formation of flexural cracks, and the associated crack spacings and crack widths are modelled from initial cracking to the onset of debonding. The bond characteristics between the longitudinal steel reinforcement and concrete, and the FRP and concrete, as well as the tension stiffening effect of the reinforcement and FRP to the concrete, are considered. The FRP-to-concrete bond-slip relation is used to determine the onset of debonding. The analytical predictions compare well with experimental results of FRP-strengthened RC cantilever slabs.  相似文献   

2.
Due to increasing popularity of using fiber-reinforced polymer (FRP) for external strengthening of concrete structures, an urgent demand for understanding the structural behavior of FRP-strengthened structures has been emerging. Unlike conventional reinforced concrete (RC) structures, FRP-strengthened members can exhibit additional flexural capacity in the postyielding stage. This makes RC models for predicting deflection inapplicable in case of FRP-strengthened structures. Therefore, some models have been explicitly developed for evaluating deflection of the strengthened structures. However, most existing models are empirically based, verified with limited experimental results, and require in some cases sophisticated calculation procedures. Accordingly, there is still a demand for a rational and more convenient model for predicting deflection of FRP-strengthened beams. In the current paper, Bischoff’s model, originally proposed for RC and FRP reinforced structures, was extended. Consequently, the developed model is applicable to FRP-strengthened concrete beams besides its validity to both RC and FRP reinforced beams. Validation of the model with some available test data confirmed its accuracy.  相似文献   

3.
It has been demonstrated, through laboratory investigations and various field projects, that the external bonding of fiber- reinforced polymer (FRP) laminates is an effective technique for the structural enhancement of reinforced concrete slabs. In such applications, failure is generally governed by debonding of the FRP laminate. Nevertheless, numerical simulations to date of FRP-strengthened slabs have usually been based on the assumption of full bond between the concrete and FRP. In this study, the interfacial behavior between the FRP laminates and the concrete substrate is accounted for by introducing appropriate bond-slip models for the interface in a nonlinear finite-element analysis of FRP-strengthened two-way slabs. The numerical model is capable of simulating slabs strengthened in shear or in flexure; it can be applied to arbitrary FRP configurations, and can also accommodate both passive as well as prestressed FRP strengthening schemes. Results are presented in terms of load-deflection relationships, ultimate load capacities, failure modes, and interfacial slip and stress distributions. When compared to test results reported in the literature, the analysis is shown to lead to excellent predictions in that, for the entire set of FRP-strengthened specimens considered, the average of the numerical-to-experimental load capacity ratios is 0.966, with a standard deviation of 0.066. Furthermore, in all cases when FRP debonding was observed experimentally, the analysis correctly predicted the mode of failure.  相似文献   

4.
Although there is a large amount of experimental data available on the fiber-reinforced polymer (FRP) strengthening of concrete structures, a full understanding of the various debonding phenomena is somewhat lacking. As a contribution to fill this need, two-dimensional and three-dimensional (3D) nonlinear displacement-controlled finite-element (FE) models are developed to investigate the flexural and FRP/concrete interfacial responses of FRP-strengthened reinforced concrete beams. Interface elements are used to simulate the FRP/concrete interfacial behavior before and after cracking. The analysis is carried out using two different relations for the interface; namely, nonlinear and bilinear bond–slip laws. The results predicted using these two laws are compared to those based on the full-bond assumption. The FE models are capable of simulating the various failure modes, including debonding of the FRP, either at the plate end or at intermediate cracks. The 3D model is created to accommodate cases of FRP-strengthened reinforced concrete beams utilizing FRP anchorage systems. In addition, the models successfully represent the actual interfacial behavior at the vicinities of cracks including the stress/slip concentrations and fluctuations. Results are presented in terms of the ultimate load carrying capacities, failure modes and deformational characteristics. Special emphasis is placed on the FRP/concrete interfacial behavior and cracking of the concrete. The numerical results are compared to available experimental data for 25 specimens categorized in six series, and they show a very good agreement.  相似文献   

5.
For concrete beams and slabs, the bonding of fiber reinforced plastic (FRP) plates to the bottom surface is an effective and efficient technique for flexural strengthening. Failure of strengthened members often occurs due to stress concentrations at the FRP/concrete interface. For debonding failure initiated at the bottom of shear or shear/flexural cracks in the concrete, experimental results clearly indicate a progressive failure process accompanied by gradual reduction in shear transfer capability at the interface. Several existing models for FRP debonding have taken interfacial shear softening into account. However, the assumed shear stress versus slip relations employed in the models have never been properly measured. In this investigation, a combined experimental/theoretical approach for the extraction of interfacial stress versus slip relation is developed. With loading applied to a bonded FRP plate, strain is measured at various points along its length. Based on the strain measurements, the interfacial softening curve is derived from a finite element analysis. The present paper will present the proposed approach in detail, demonstrate its application to typical experimental data, and discuss the implications of the results.  相似文献   

6.
The main disadvantage of reinforced concrete beams retrofitted with steel or fiber reinforced polymer (FRP) plates adhesively bonded to the external surfaces is the premature debonding of the plates before reaching the desired strength or ductility. One of the main mechanisms of debonding failure is intermediate crack (IC) debonding, which is initiated by the formation of flexural cracks in the vicinity of the plates causing slip to occur at the plate/concrete interfaces. Much of the existing research focuses on the bond–slip relationship at the plate/concrete interface, with a lack of attention on the IC debonding behavior of flexural members. In this research, a model is described for IC debonding of plated RC beams that is based on partial interaction theory. To allow a better understanding of the IC debonding behavior of plated members, studies are carried out using the proposed model to study the effects of variations in crack spacings and rate of change of moment, and it is shown that both of these factors as well as the number of cracks in the beam can have large effects on the local behavior and the resultant strains in the plated member.  相似文献   

7.
Intermediate crack-induced debonding (IC debonding) is a common failure mode of RC beams strengthened with externally bonded fiber-reinforced polymer (FRP) reinforcement. Although extensive research has been carried out on IC debonding, much work is still needed to develop a better understanding of the failure mode and a more reliable strength model. This paper presents an advanced finite-element (FE) model on the basis of the smeared-crack approach for predicting IC debonding failure. Existing FE models of the same type are generally deficient in capturing localized cracks (both their pattern and widths). This deficiency is overcome in the proposed FE model through the accurate modeling of interfaces between the concrete and both the internal steel and the external FRP reinforcements. The capability and accuracy of the proposed model are demonstrated through comparisons of its predictions with selected test results. The importance of accurate modeling of localized cracking is also explained using numerical results obtained from the FE model.  相似文献   

8.
In some terrorist attacks, it is possible that RC structures might be subjected to more than a single explosion. RC structures designed without the consideration of blast effects tend to lose their capacity after the first explosion. The use of a fiber reinforced polymer (FRP) sheet has been proven to enhance the performance and resistance of an RC member under a single explosion test. However, there appears to have been no experimental programs conducted to assess the performance of FRP-strengthened RC members subjected to multiple explosions reported in the literature. This paper, therefore, presents experimental results for the behavior of RC slabs strengthened by an FRP sheet after undergoing single, double, and triple independent explosion testing. Results from these blast tests indicate that the FRP sandwich RC slab tested was able to sustain the subsequent second explosion of greater impact. A brittle shear failure with FRP debonding was observed following the third explosion on this FRP-strengthened RC slab.  相似文献   

9.
The presence of a fiber-reinforced polymer (FRP) strengthening material bonded to the tension face of a reinforced concrete beam will restrict but not prevent the opening of intermediate flexural cracks due to applied loading. Test results indicate that displacements at the toe of flexural cracks create stress concentrations at the interface of the FRP laminate and the beam, leading to the development of localized interface cracks that, typically, propagate, under the effect of the load, to join the original flexural cracks and cause delamination of the FRP system. This type of FRP delamination is commonly termed intermediate crack (IC) debonding. In this paper the analytical models published in the literature are reviewed and it was found that these models do not correlate well with measured experimental results. This paper proposes an analytical model that characterizes the interface shear stress based on two distinct sources: (1) the change in the applied moments along the length of the member and (2) stress concentrations at the intermediate cracks. The proposed model is compared to an experimental database and shown to predict extremely well most of the test results reported by other researchers. A parametric study, performed using the proposed model, indicates that the model varies with several important variables that are not captured by most of the existing models.  相似文献   

10.
This paper deals with the shear strengthening of RC beams using externally bonded (EB) fiber-reinforced polymers (FRP). Current code provisions and design guidelines related to shear strengthening of RC beams with FRP are discussed in this paper. The findings of research studies, including recent work, have been collected and analyzed. The parameters that have the greatest influence on the shear behavior of RC members strengthened with EB FRP and the role of these parameters in current design codes are reviewed. This study reveals that the effect of transverse steel on the shear contribution of FRP is important and yet is not considered by any existing codes or guidelines. Therefore, a new design method is proposed to consider the effect of transverse steel in addition to other influencing factors on the shear contribution of FRP (Vf). Separate design equations are proposed for U-wrap and side-bonded FRP configurations. The accuracy of the proposed equations has been verified by predicting the shear strength of experimentally tested RC beams using data collected from the literature. Finally, comparison with current design guidelines has shown that the proposed model achieves a better correlation with experimental results than current design guidelines.  相似文献   

11.
Analytical models are presented in this study for the analysis of reinforced concrete joints strengthened with composite materials in the form of externally bonded reinforcement comprising unidirectional strips or flexible fabrics. The models provide equations for stresses and strains at various stages of the response (before or after yielding of the beam or column reinforcement) until the ultimate capacity is reached, defined by concrete crushing or fiber-reinforced polymer (FRP) failure due to fracture or debonding. Solutions to these equations are obtained numerically. The models provide useful information on the shear capacity of FRP-strengthened joints in terms of the quantity and configuration of the externally bonded reinforcement and may be used to design FRP patching for inadequately detailed beam-column joints. A number of case studies are examined in this article, indicating that even low quantities of FRP materials may provide significant enhancement of the shear capacity. The effectiveness of external reinforcement increases considerably if debonding is suppressed and depends heavily on the distribution of layers in the beam and column. The latter depends on the relative quantities of steel reinforcement crossing the joint panel and the level of axial load in the column. Analytical shear strength predictions were in good agreement with test results found in the literature, thus adding confidence to the validity of the proposed models.  相似文献   

12.
The flexural behavior of fiber-reinforced polymer (FRP)–strengthened beams after exposure to elevated temperatures in an electrical furnace was investigated. Twenty-five specimens making up unstrengthened beams and FRP-strengthened beams were fabricated. Glass and basalt FRP systems were used with and without protective systems, which included a cement mortar overlay and two types of commercially available intumescent coatings. Typical temperature-time histories at the surface of FRP laminates, FRP-concrete interface, internal steel bars, and center of beams were monitored by using two specimens. The other specimens were tested to failure under three-point bending after subjecting them to elevated temperatures. Test results indicated a general decrease in the initial stiffness and ultimate strength of the specimens with an increase in the exposed temperature. The protective systems appeared to preserve the structural integrity of glass FRP systems when the elevated temperature was less than approximately 700°C. Basalt FRP-strengthened beams exhibited smaller deterioration in ultimate strength than glass FRP-strengthened beams.  相似文献   

13.
This paper presents the results of an experimental investigation into the behavior of slender steel columns strengthened using high-modulus (313?GPa), carbon fiber-reinforced polymer (CFRP) plates. Eighteen slender hollow structural section square column specimens, 44×44×3.2?mm, were concentrically loaded to failure. The effectiveness of CFRP was evaluated for different slenderness ratios (kL/r), namely, 46, 70, and 93. The maximum increases in ultimate load ranged from 6 to 71% and axial stiffness ranged from 10 to 17%, respectively, depending on kL/r. As kL/r reduced, the effectiveness of CFRP plates also reduced, and failure mode changed from CFRP plate crushing after occurrence of overall buckling, to debonding prior to, or just at, buckling. A simplified analytical model is proposed to predict the ultimate axial load of FRP-strengthened slender steel columns, based on the ANSI/AISC 360-05 provisions, which were modified to account for the transformed section properties and a failure criteria of FRP derived from the experimental results. It was shown that for a given FRP reinforcement ratio, there is a critical kL/r at the low end, below which FRP may not enhance the strength of the column.  相似文献   

14.
The use of fiber-reinforced polymer (FRP) for strengthening concrete structures has grown remarkably during the past few years. In spite of exhibiting superior properties, the safety of usage is questionable as FRP undergoes brittle debonding failure. The aim of this study is to review and compare the existing research on bond failure between FRP and concrete substrates. Among the different failure modes, there has been little research in terms of intermediate crack-induced interfacial debonding and fewer strength models are developed for predicting such failures. Conducting a simple shear test on the FRP bonded to a concrete substrate can simulate this type of failure mode. Twelve specimens were tested to study the influence of concrete strength and the amount of FRP on the ultimate load capacity of a FRP–concrete bond under direct shear. Existing experimental work was collected from the literature and consists of an extensive database of 351 concrete prisms bonded to FRP and tested in direct shear tests. The analytical models from various sources are applied to this database and the results are presented.  相似文献   

15.
As existing structures age or are required to meet the changing demands on our civil infrastructure, poststrengthening and retrofitting are inevitable. A relatively recent technique to strengthen reinforced concrete (RC) beams in flexure uses fiber-reinforced polymer (FRP) strips or sheets glued to the tension side of the beam. A number of researchers have reported that the failure mode of an FRP-strengthened RC beam can change from the desired ductile mode of an underreinforced beam to a brittle one. This paper analyzes the effects of this strengthening technique on the response and failure modes of a reference RC beam. A nonlinear RC beam element model with bond-slip between the concrete and the FRP plate is used to study how the failure mechanism of simply supported strengthened RC beams is affected by the following parameters: plate length, plate width, plate stiffness, and loading type. The beam geometry is kept constant. The parametric studies confirm the experimentally observed results according to which the most commonly observed failure modes due to loss of composite actions are affected by the plate geometric and material properties. In addition, distributed loads (difficult to apply in an experimental test) may not be as sensitive to plate debonding in the region of maximum bending moment as are beams subjected to point loads.  相似文献   

16.
In this paper, a nonlinear finite-element model is developed for the analysis of plane stress members, such as RC beams and walls, strengthened either unidirectionally or bidirectionally with fiber-reinforced polymer (FRP) composites and subjected to either monotonic or cyclic loading. The model takes into account the effects of the bonded interface between the FRP and concrete while allowing slippage in each direction. A two-dimensional membrane contact element is developed to model the effects of local bond-slip with debonding failure between the FRP and concrete capable of being captured. The model has been incorporated into a finite-element program for the analysis of RC members subject to plane stress with verification against test data of FRP-strengthened RC joints, beams, and walls. The numerical results show good agreement with the experimental data for both load-displacement responses and for the overall failure mechanisms.  相似文献   

17.
Mechanical anchorage can delay or even prevent premature debonding failure in externally bonded fiber-reinforced polymer (FRP) composite strengthening systems. A promising type of anchor made from FRP, which is known as a FRP spike anchor or FRP anchor among other names, is noncorrosive and can be applied to a wide range of structural elements and externally bonded FRP strengthening schemes. Experimental investigations have shown FRP anchors to be effective under tension (pullout) and shear loading, however, few analytical models exist to date. This paper in turn presents analytical models to quantify the pullout strength of FRP anchors. As existing research on the pullout behavior of metallic anchors is partially relevant to FRP anchors, this paper first presents a review of current pullout strength models for metallic anchors. These models are then assessed with experimental data of FRP anchors and modified and recalibrated where appropriate. As a result, simple and rational pullout strength models for FRP anchors are proposed which can also be used in design. Finally, parametric studies are undertaken and the influence of key variables is identified.  相似文献   

18.
Available guidance for mitigating debonding failure of externally bonded fiber reinforced polymer (FRP) composites applied to concrete is evaluated based on data obtained from large- and full-scale experimental programs. Current recommendations are inadequate to effectively mitigate intermediate crack-induced debonding in flexural members. An improved, although still simple to apply, equation for determining limiting FRP material properties to mitigate debonding is presented and evaluated. Additionally, the effect of fatigue loading on the debonding behavior of externally bonded FRP is not adequately addressed in practice. In the limited data presented, a degradation of bond behavior is observed even under fatigue loading conditions amounting to an FRP stress range of no more than 4% of the FRP capacity.  相似文献   

19.
The use of fiber-reinforced polymer (FRP) externally bonded (EB) plates is widely accepted as an efficient and unobtrusive retrofitting technique. FRP near-surface mounted plates are now also gradually gaining acceptance due to their substantial increase in debonding strains over EB plates. However tests have shown that the intermediate crack (IC) debonding resistances of FRP plates can be reduced by their interaction with adjacent parallel plates and with parallel free surfaces, that is the cover; this is often reflected in design rules where the IC debonding resistance of individual plates depends on the width of the plate as a proportion of the width of the concrete specimen and on the cover. In this paper, 22 new pull tests are reported that study the IC debonding interaction with adjacent plates and cover. The results are encouraging as they show that there is little reduction in the IC debonding resistance until the lateral cover or gap between plates is relatively small.  相似文献   

20.
In this study, numerical models of fiber-reinforced polymer (FRP)-strengthened beams were developed using nonlinear fracture mechanics for the modeling of the concrete-FRP (longitudinal and U-wrap) interfaces. Mode 1, Mode 2, and mixed-mode interfacial behaviors were considered. Results from the finite-element models were compared with experimental tests of large-scale strengthened beams using FRP U-wraps as anchors. The numerical program assessed the effect of the interfacial modeling in the global and local responses. A parametric study was conducted to determine the effect of additional longitudinal FRP sheets in strengthened beams with and without FRP U-wraps. Results from this study indicate that the use of a mixed-mode concrete-FRP interface is a robust numerical approach for the prediction of the global and local responses of large-scale FRP-strengthened beams. The parametric study shows that the use of FRP U-wraps could improve the strength and ductility of the FRP-strengthened beams by changing their failure mode and deflection response. Appropriate modeling of the concrete-FRP interfaces is needed to successfully predict these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号