首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collapse of unreinforced masonry (URM) walls is the cause of many casualties during extreme loading events. The objective of this current research was to investigate effective and practical approaches for strengthening URM block walls with openings to resist extreme out-of-plane loads. Five full-scale masonry block walls were constructed. The walls had different opening configurations such as a single center window, one window off center, two windows, a wide window and a door. The walls were tested when subjected to uniformly distributed lateral load up to failure. The walls were then strengthened using carbon fiber-reinforced polymer laminate strips and then retested. The walls were set up in a vertical test frame and were subjected to cyclic out-of-plane distributed pressure using an airbag. Failure of the unstrengthened URM block wall was along the mortar joints. In the strengthened walls, failure occurred in the mortar joints as well as in concrete blocks near the carbon strips. The lateral load carrying capacity of the strengthened walls was found to be significantly higher than that of the unstrengthened walls and had much more ductile performance.  相似文献   

2.
Impact tests using drop-weight pendulum on nine 1.2-m-high full-scale concrete masonry block walls were conducted to investigate the out-of-plane impact behavior of unreinforced masonry (URM) walls externally strengthened with carbon-fiber-reinforced polymer (CFRP) composites. Three strengthening schemes on one side of the wall were studied: continuous unidirectional and continuous woven sheets, discrete strips in a vertical pattern, and discrete strips in orthogonal and diagonal patterns. All walls were vertically positioned resting on a knife-edge support with one face leaning against two steel rollers close to the upper and lower edges of the wall. The impact load was applied at the wall center through a drop-weight pendulum impact tester with various drop heights. Test results revealed that using composite laminates or strips could significantly improve the impact performance of URM walls. The wall strengthened with continuous woven sheets performed better than the one with unidirectional sheet. With the same amount of fiber-reinforced polymer strip material, the wall with narrower but more closely spaced strips performed slightly better than the one with wider strips.  相似文献   

3.
Research reported herein investigates the out-of-plane impact resistance of unreinforced masonry (URM) walls strengthened with carbon fiber-reinforced polymer (CFRP) composites, externally applied in sheets to one face of the wall. Two analytical methods based on energy principle and wave propagation theory and a finite-element-based numerical model have been developed, assuming a perfect bond at composite–masonry interface with an equivalent stiffness of the system. Full-scale impact tests are conducted for verification purpose, where three 1.2?m tall URM concrete walls (one unstrengthened and two strengthened with continuous unidirectional and woven CFRP sheets) are vertically tested up to cracking using a pendulum drop-weight impact tester. The test results compare reasonably well with those obtained from the analyses and simulation. It is found that the energy and finite-element methods can provide reasonable estimates for peak impact force and wall deflection, whereas the wave propagation method is rather limited by its applicability. Parametric studies are conducted to examine the effect of impactor mass, velocity, amount of CFRP reinforcement, and property of masonry material using the developed models.  相似文献   

4.
The results of an experimental and numerical study of the flexural behavior of reinforced concrete beams strengthened with glass-fiber-reinforced-polymer (GFRP) laminates are presented in this paper. In the experimental program, ten strengthened beams and two unstrengthened beams are tested to failure under monotonic loading. A number of external GFRP laminate layers and bond length of GFRP laminates in shear span are taken as the test variables. Longitudinal GFRP strain development and interfacial shear stress distribution from the tests are examined. The experimental results generally showed that both flexural strength and stiffness of reinforced concrete beams could be increased by such a bonding technique. In the numerical study, an eight-node interface element is developed to simulate the interface behavior between the concrete and GFRP laminates. This element is implemented into the MARC software package for the finite-element analyses of GFRP laminate strengthened reinforced concrete beams. Reasonably good correlations between experimental and numerical results are achieved.  相似文献   

5.
Despite many studies on beams and slabs strengthened using fiber-reinforced plastic (FRP) plates, no study has been reported on the strengthening of RC cantilever slabs (e.g., canopies and balconies) using FRP materials. This paper presents the results of an experimental study of the feasibility of strengthening deficient RC cantilever slabs by bonding glass FRP (GFRP) strips∕sheets on the top surface (the tension side). As the key to the success of this strengthening method is a proper way of anchoring the GFRP strips into the supporting wall and the slab, the effectiveness of different anchorage systems was the focus of the experiments. Based on the test results, a simple and effective method is identified in which the GFRP strips are anchored into the walls through horizontal slots and onto the slab using fiber anchors.  相似文献   

6.
Strengthening of Infill Masonry Walls with FRP Materials   总被引:1,自引:0,他引:1  
This paper evaluates the effectiveness of different externally bonded glass fiber–reinforced polymer (GFRP) systems for increasing the out-of-plane resistance of infill masonry walls to loading. The research included a comprehensive experimental program comprising 14 full-scale specimens, including four unstrengthened (control) specimens and 10 strengthened specimens. To simulate the boundary conditions of infill walls, all specimens consisted of a reinforced concrete (RC) frame, simulating the supporting RC elements of a building superstructure, which was infilled with solid concrete brick masonry. The specimens were loaded out-of-plane using uniformly distributed pressure to simulate the differential (suction) pressure induced by a tornado. Parameters investigated in the experimental program included aspect ratio, FRP coverage ratio, number of masonry wythes, and type of FRP anchorage. Test results indicated that the type of FRP anchorage had a significant effect on the failure mode. Research findings concluded that GFRP strengthening of infill masonry walls is effective in increasing the out-of-plane load-carrying capacity when proper anchorage of the FRP laminate is provided.  相似文献   

7.
Recent earthquakes have shown the vulnerability of unreinforced masonry (URM) buildings, which have led to an increasing demand for techniques to upgrade URM buildings. Fiber reinforced polymer (FRP) can provide an upgrading alternative for URM buildings. This paper presents results of dynamic tests investigating the in-plane behavior of URM walls upgraded with FRP (URM-FRP). These tests represent pioneer work in this area (dynamic and in-plane). Five half-scale walls were built, using half-scale brick clay units, and upgraded on one face only. Two moment/shear ratios (1.4 and 0.7), two mortar types (M2.5 and M9), three composite materials (carbon, aramid, and glass), three fiber structures (plates, loose fabric, and grids), and two upgrading configurations (diagonal “X” and full surface shapes) were investigated. The test specimens were subjected to a series of synthetic earthquake motions with increasing intensities on a uniaxial earthquake simulator. The tests validate the effectiveness of the one side upgrading: the upgrading technique improved the lateral resistance of the URM walls by a factor ranging from 1.3 to 2.9; however, the improvement in the lateral drift was less significant. Moreover, no uneven response was observed during the test due to the single side upgrading. Regarding the upgrading configurations, the bidirectional surface type materials (fabrics and grids) applied on the entire surface of the wall (and correctly anchored) can help postpone the three classic failure modes of masonry walls: rocking (“flexural failure”), step cracking, and sliding (“shear failures”). Additionally, in some situations, they will postpone collapse by “keeping the bricks together” under large seismic deformations. On the other hand, the diagonal “X” shape was less successful and premature failure was developed during the test.  相似文献   

8.
The behavior of six 1:2.5-scale reinforced concrete cantilever wall specimens having an aspect ratio of 1.5, tested to failure and subsequently repaired and strengthened using fiber-reinforced polymer (FRP) sheets is investigated. Specimens were first repaired by removing heavily cracked concrete, lap splicing the fractured steel bars by welding new short bars, placing new hoops and horizontal web reinforcement, and finally casting nonshrink high-strength repair mortar. The specimens were then strengthened using FRP sheets and strips, with a view to increasing flexural as well as shear strength and ductility. In addition to different arrangements of steel and FRP reinforcement in the walls, a key parameter was the way carbon-FRP strips added for flexural strengthening were anchored; steel plates and steel angles were used to this effect. Steel plates were anchored using U-shaped glass-FRP (GFRP) strips or bonded metal anchors. Test results have shown that by using FRP reinforcement, the flexural and shear strength of the specimens can be increased. From the anchorage systems tested, metal plates combined with FRP strips appear to be quite efficient. The effectiveness of the bonded metal anchors used was generally less than that of the combination of plates and GFRP strips. In all cases, final failure of the FRP anchorage is brittle, but only occurs after the peak strength is attained and typically follows the fracture of steel reinforcement in critical areas, hence the overall behavior of the strengthened walls is moderately ductile.  相似文献   

9.
In the last two decades, several seismic retrofitting techniques for masonry structures have been developed and practiced and fiber-reinforced polymer (FRP) material has been increasingly used owing to its high strength/stiffness to mass ratio and easy application. Although much research has been carried out on FRP strengthening of unreinforced masonry (URM) structures, most of it has been experimental studies to investigate the effectiveness of retrofitting techniques rather than the development of a rational design model. In addition, more research has been conducted on FRP-retrofitted URM walls under out-of-plane loads where flexural behavior dominates, the research on the shear strength of FRP-retrofitted URM walls has been limited. This paper presents a review of research in this area. Existing retrofitting techniques are overviewed, followed by a detailed discussion of experimental results of failure modes as they are directly related to the design model. The available design models are then assessed based on a test database collected from the available literature. Limitations of each model are addressed.  相似文献   

10.
This paper investigates strengthening masonry walls using glass-fiber reinforced polymer (GFRP) sheets. An experimental research program was undertaken. Both clay and concrete brick specimens were tested, with and without GFRP strengthening. Single-sided strengthening was considered, as it is often not practicable to apply the reinforcement to both sides of a wall. Static tests were carried out on six masonry panels, under a combination of vertical preload, and in-plane horizontal shear loading. The mechanisms by which load was carried were observed, varying from the initial, uncracked state, to the final, fully cracked state. The results demonstrate that a significant increase of the in-plane shear capacity of masonry can be achieved by bonding GFRP sheets to the surface of masonry walls. The experimental data were used to assess the effectiveness of the GFRP strengthening, and suggestions are made to allow the test results to be used in the design of sheet GFRP strengthening for masonry structures.  相似文献   

11.
Repair and rehabilitation of infrastructure is becoming increasingly important for bridges due to material deterioration and limited capacity to accommodate current load levels. An experimental program was undertaken to study the flexural behavior of creosote-treated sawn Douglas fir timber beams strengthened with glass fiber-reinforced polymer (GFRP) bars. Twenty-two half-scale and four full-scale timber beams strengthened with GFRP were tested to failure. The percent reinforcement ratios were between 0.27 and 0.82%. Additional unreinforced timber beams were tested as control specimens. The results have shown that using the proposed experimental technique changed the failure mode from brittle tension to compression failure, and flexural strength increased by 18 to 46%. Research findings indicate the use of near-surface GFRP bars overcomes the effect of local defects in the timber and enhances the bending strength of the members. Based on the experimental results, an analytical model is proposed to predict the flexural capacity of both unreinforced and GFRP-reinforced timber beams. The article also reviews implementation of the proposed technique for strengthening a timber bridge near Winnipeg, Manitoba, Canada.  相似文献   

12.
Masonry structures have demonstrated their seismic vulnerability during recent world seismic events. This paper investigates in-plane seismic performance of unreinforced masonry (URM) walls before and after they are retrofit using fiber-reinforced polymer (FRP) materials. An assessment of available design formulas for evaluating both the in-plane performance of URM walls and the contribution of FRP strengthening systems was performed. Walls with two configurations of the FRP reinforcement have been analyzed: one based on FRP strips installed parallel to the mortar joints, the other characterized by FRP strips arranged along the diagonals of the wall. Based on shear–compression tests carried out on FRP-strengthened masonry walls available in the literature, a comparison between theoretical and experimental data is performed. A discussion about the FRP strains at failure of the walls is provided and values of effective FRP strains to be used for design purposes are proposed.  相似文献   

13.
Behavior of Retrofitted URM Walls under Simulated Earthquake Loading   总被引:1,自引:0,他引:1  
Unreinforced masonry (URM) buildings perform poorly under seismic forces and have been identified as the main cause of loss of life in recent earthquakes. Many of these structures fail in out-of-plane bending due to the lack of reinforcement. In this study, the experimental results from three half-scale unreinforced brick walls retrofitted with vertical composite strips are presented. The specimens were subjected to cyclic out-of-plane loading. Five reinforcement ratios and two different glass fabric composite densities were investigated. The mode of failure is controlled by tensile failure when wider and lighter composite fabrics are used and by delamination when stronger ones are used. The tested specimens were capable of supporting a lateral load up to 32 times the weight of the wall. A deflection as much as 2% of the wall height was measured. Although both URM walls and composite strips behave in a brittle manner, the combination resulted in a system capable of dissipating some energy. Retrofitting URM walls with composite strips proved to be a good and reliable strengthening alternative.  相似文献   

14.
Although masonry is one of the oldest construction materials, its behavior has not been investigated as extensively as other construction materials. Out-of-plane failures are common in unreinforced masonry (URM) buildings constructed in seismic regions. Seven half-scale brick masonry walls were constructed, externally strengthened with vertical glass-fabric composite strips, and subjected to static cyclic out-of-plane loading. The flexural behavior of the tested specimens is characterized by three main stages corresponding to the first visible bed-joint crack, the first delamination, and the ultimate load. The main parameters being investigated in this study are the amount of composite, the height-to-thickness ratio h∕t, the tensile strain in composites, and the mode of failure. Based on the trends observed in the experimental phase, it was concluded that the behavior of the walls is best predicted with a linear elastic approach. It was also concluded that the ultimate strength method overestimates the flexural capacity and the ultimate deflection of the wall. Preliminary design recommendations are also proposed for tensile strain in the composite, maximum deflection, and maximum reinforcement ratio.  相似文献   

15.
The objective of this paper is to assess the out-of-plane flexural performance of masonry walls that are reinforced with glass fiber-reinforced polymers (GFRPs) rods, as an alternative for steel rebars. Eight 1?m×3?m full-scale walls were constructed using hollow concrete masonry units and tested in four-point bending with an effective span of 2.4 m between the supports. The walls were tested when subjected to increasing monotonic loads up to failure. The applied loads would represent out-of-plane loads arising from wind, soil pressure, or inertia force during earthquakes. One wall is unreinforced; another wall is reinforced with customary steel rebars; and the other six walls are reinforced with different amounts of GFRP reinforcement. Two of the GFRP-reinforced walls were grouted only in the cells where the rods were placed to investigate the effect of grouting the empty cells. The force-deformation relationship of the walls and the associated strains in the reinforcement were monitored throughout the tests. The relative performance of different walls is assessed to quantify the effect of different design variables. The range of GFRP reinforcement ratios covered in the experiments was used to propose a capacity diagram for the design of FRP-reinforced masonry walls similar to that of reinforced concrete elements.  相似文献   

16.
Behavior of FRP Strengthened Infill Walls under In-Plane Seismic Loading   总被引:1,自引:0,他引:1  
The present paper investigates the suitability and effectiveness of fiber-reinforced polymers (FRP) in strengthening and/or repairing unreinforced masonry infill walls in reinforced concrete frames which are subjected to in-plane seismic/cyclic loading. For this purpose, a detailed experimental program was conducted. Specimen geometry, test setup, instrumentation, and a loading procedure that simulates earthquake loading are presented in a detailed fashion. Results of experimental observations are discussed in the form of load-displacement hysteretic loops and envelopes; column profiles; strain diagrams, and wall shear distortion. The test results, in general, indicate that the use of glass FRP (GFRP) sheets as strengthening materials provides a degree of enhancement to the infill wall, upgrades its deformation capacity, and makes the wall work as one unit. These results thus show great potential for externally bonded GFRP sheets in upgrading and strengthening the infill walls under in-plane seismic loads.  相似文献   

17.
The research work reported here investigates the out-of-plane flexural behavior of masonry walls reinforced externally with glass fiber reinforced polymer (GFRP) sheets and subjected to cyclic loading. A full-scale test program consisting of eight wall specimens was conducted. Nine tests were performed, in which three parameters were studied. These included the level of compressive axial load, amount of internal steel reinforcement, and amount of externally bonded GFRP sheet reinforcement. Of the three parameters studied, varying the amount of GFRP sheets was the only parameter that significantly affected the behavior of the walls. The GFRP sheet reinforcement governed the linear response of the bending moment versus centerline deflection hysteresis. Increasing or decreasing the amount of GFRP sheet reinforcement either increased or decreased both the wall stiffness and the ultimate strength, respectively. Except for visible cracks, the walls maintained their structural integrity throughout the out-of-plane cyclic loading. The unloading/reloading paths for successive loading cycles were similar, indicating little degradation. Thus, the general behavior of the walls was very predictable. The system, therefore, could be used to advantageously rehabilitate older masonry structures that are inadequately reinforced to withstand seismic events. A simple model of the behavior is also presented to allow for the evaluation of the strength and deformation characteristics of these elements.  相似文献   

18.
Strengthening of RC cantilever slabs using bonded glass-fiber–reinforced plastic (GFRP) strips has recently been explored. That work led to the proposal that the GFRP strips should be anchored to the supporting wall using epoxy-mortar–filled horizontal slots and to the slab using fiber anchors, to prevent or limit debonding. This paper focuses on the strength of RC cantilever slabs strengthened using this method. Experimental work on model cantilever slabs with steel reinforcement of different amounts and different positions is presented. Because of the presence of fiber anchors, all strengthened slabs failed by tensile rupture of the fiber-reinforced plastic (FRP), although in some of the slabs partial debonding had appeared before the FRP rupture took place. Flexural strength equations based on the conventional plane section assumption are next described and shown to predict the test results well, even for slabs with partially debonded FRP strips. Finally, the effect of preloading on the strength of strengthened slabs is discussed.  相似文献   

19.
This paper presents the results of an analytical investigation of one-way unreinforced masonry (URM) walls retrofitted with externally anchored steel studs and subjected to blast loads. Using the wall geometrical and material properties, deflected shape, and crack pattern as input, a nonlinear model is developed to predict the inward force-displacement relationship of the retrofitted walls. In addition, using a rigid body analysis, a simple bilinear force-displacement relationship is developed to model the outward force-displacement relationship of the walls. Utilizing these two force-displacement relationships (resistance functions), a generalized single-degree-of-freedom (SDOF) model is developed to capture the nonlinear out-of-plane dynamic response of the retrofitted walls under blast loads. The SDOF model captured the experimentally observed displacement responses of the tested walls with reasonable accuracy. The model was also used to investigate the influence of block thickness, wall slenderness ratio, blast load intensity, and blast pulse shape on the out-of-plane dynamic response of retrofitted walls. The results demonstrated that anchored steel-stud systems could significantly enhance the out-of-plane capacity of the retrofitted walls by increasing their out-of-plane capacity and reducing their displacement.  相似文献   

20.
The results of testing two simply and three continuously supported concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars are presented. The amount of GFRP reinforcement was the main parameter investigated. Over and under GFRP reinforcements were applied for the simply supported concrete beams. Three different GFRP reinforcement combinations of over and under reinforcement ratios were used for the top and bottom layers of the continuous concrete beams tested. A concrete continuous beam reinforced with steel bars was also tested for comparison purposes. The experimental results revealed that over-reinforcing the bottom layer of either the simply or continuously supported GFRP beams is a key factor in controlling the width and propagation of cracks, enhancing the load capacity, and reducing the deflection of such beams. Comparisons between experimental results and those obtained from simplified methods proposed by the ACI 440 Committee show that ACI 440.1R-06 equations can reasonably predict the load capacity and deflection of the simply and continuously supported GFRP reinforced concrete beams tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号