首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
This paper discusses the mechanical behavior of reinforced concrete columns wrapped with fiber-reinforced polymer (FRP) sheets. A numerical routine was developed to predict the behavior of the columns using a step-by-step technique. The routine is based on an existing model and was modified to account for confinement provided by the traditional steel as well as the external FRP wraps. Several empirical equations for the confined concrete were calibrated with results from experimental tests from different published papers. The most accurate equation was incorporated into the routine to predict the stress-strain relation of the column up to failure. A different confinement to the outer concrete cover and the inner core was used to account for the FRP wraps and the transverse steel. The model was calibrated with experimental results from different experiments on FRP-wrapped reinforced concrete columns.The model was taken one step further by using it to predict the behavior of reinforced concrete columns, with a combination of steel corrosion and CFRP wraps. The columns modeled were subjected to harsh corrosive environment over 44 months. The model successfully predicted the load deformation in both axial and circumferential directions in corroded and intact columns, both wrapped and unwrapped, with good accuracy. The analysis forms a solid foundation for accurate evaluation of the effect of corrosion and wrapping on reinforced concrete columns.  相似文献   

2.
This paper studies the cross-sectional behavior of steel columns strengthened with fiber-reinforced polymers (FRPs). The composite column is constructed by wrapping the steel I-section column with epoxy-saturated glass- and carbon-FRPs (GFRP and CFRP) sheets in the transverse direction and subsequently filling the voids between the FRP and the steel with concrete. Experimental tests were performed on stub columns under axial compression including one to three CFRP wraps. A corner treatment technique, to avoid stress concentration at the corners and to improve confinement efficiency, was also investigated. A simplified analytical model was developed to predict the axial behavior of the composite columns. Experimental results showed significant enhancement in the behavior of the composite columns primarily attributable to the confinement mechanism imposed by the FRP jacket and concrete. Increasing the corner radius resulted in higher compressive strength of the confined concrete and ultimate axial strain of the composite columns. Good agreement between the analytically developed axial load-displacement relationships and the test data indicates that the model can closely simulate the cross-sectional behavior of the composite columns.  相似文献   

3.
This paper aims to examine the effectiveness of near-surface-mounted (NSM) glass fiber-reinforced polymer (GFRP) composite rebars in combination with external confinement with carbon fiber-reinforced polymer (CFRP) composite sheets to repair and strengthen reinforced concrete (RC) columns exposed to axial load and biaxial bending. Nine columns with a square cross section of 150×150??mm were constructed and tested under biaxial eccentric loading with equal eccentricity along each principal axis. Test parameters included load eccentricity, concrete grade, and level of the CFRP confinement used in combination with the NSM-GFRP reinforcement. The effectiveness of the NSM-GFRP reinforcement was greatly affected by the CFRP-confinement level and the load eccentricity. For columns with a high level of CFRP confinement, the gain in the load capacity attributable to the NSM-GFRP reinforcement was higher at a lower eccentricity. For columns with a low level of CFRP confinement, the gain in the load capacity attributable to the NSM-GFRP reinforcement was higher at a higher eccentricity. The enhancement in the load capacity was more pronounced in the columns with a lower concrete grade. An analytical model for predicting the load capacity of RC columns strengthened with NSM-GFRP rebars in combination with CFRP confinement under axial load and biaxial bending is introduced. The model accounts for the nonlinear behavior of materials and the change in geometry under biaxial eccentric loading. The model accuracy is demonstrated by comparing the model predictions with the experimental results.  相似文献   

4.
A strengthening technique, combining carbon fiber-reinforced polymer (CFRP) laminates and strips of wet layup CFRP sheet, is used to increase both the flexural and the energy dissipation capacities of reinforced concrete (RC) columns of square cross section of low to moderate concrete strength class, subjected to constant axial compressive load and increasing lateral cyclic loading. The laminates were applied according to the near surface mounted technique to increase the flexural resistance of the columns, while the strips of CFRP sheet were installed according to the externally bonded reinforcement technique to enhance the concrete confinement, particularly in the plastic hinge zone where they also offer resistance to the buckling and debonding of the laminates and longitudinal steel bars. The performance of this strengthening technique is assessed in undamaged RC columns and in columns that were subjected to intense damage. The influence of the concrete strength and percentage of longitudinal steel bars on the strengthening effectiveness is assessed. In the groups of RC columns of 8 MPa concrete compressive strength, this technique provided an increase of about 67% and 46% in terms of column’s load carrying capacity, when applied to undamaged and damaged columns, respectively. In terms of energy dissipation capacity, the increase ranged from 40%–87% in the undamaged columns, while a significant increase of about 39% was only observed in one of the damaged columns. In the column of moderate concrete compressive strength (29 MPa), the technique was even much more effective, since, when compared to the maximum load and energy dissipation capacity of the corresponding strengthened column of 8 MPa of average compressive strength, it provided an increase of 39% and 109%, respectively, showing its appropriateness for RC columns of buildings requiring upgrading against seismic events.  相似文献   

5.
Hollow core reinforced concrete columns are generally preferred in use to decrease the cost and weight/stiffnesss ratio of members, such as bridge columns and piles. With a simplified stress state assumption, strengthening a hollow core reinforced concrete column with fiber-reinforced polymer (FRP) wrapping provides a biaxial confinement to the concrete, which leads to a need of defining the effect of FRP wrapping on the strength and ductility of the hollow core reinforced concrete columns. In this study, two groups of four hollow core reinforced concrete columns (205?mm outer diameter, 56?mm hollow core diameter, and 925?mm height) were tested under concentric, eccentric (25 and 50?mm eccentricity) and bending loads to observe the effect of carbon FRP (CFRP) wrapping. All the columns had internal steel reinforcement. Half of the columns had three layers of circumferential CFRP wrapping, whereas the other half had no external confinement. Axial load-bending moment (P–M) diagrams of each group were drawn using the obtained experimental results for both groups. It was observed that, CFRP wrapped columns had higher load and moment carrying capacities than the other group. An analytical model is proposed for drawing the P–M diagram of CFRP wrapped hollow core reinforced concrete columns.  相似文献   

6.
In civil engineering today, only 20 to 30% of the strength of carbon-fiber-reinforced polymer (CFRP) strips is used when they are applied as externally bonded strips for flexural and shear strengthening or in confinement of reinforced concrete (RC) structural elements. The strips are better used when the CFRP material is prestressed. This offers several advantages, including reduced crack widths, reduced deflections, reduced stress in the internal steel, and possibly increased fatigue resistance. In this paper, recent developments in the field of RC strengthening using prestressed CFRP are presented. The paper focuses on developments in flexural and shear strengthening and column confinement made at the Swiss Federal Laboratory for Materials Testing and Research (Empa). Several innovative ideas have been successfully realized in the laboratory. For example, a gradient prestressing technique without end anchorage plates was developed and successfully applied to a 17?m RC bridge girder. A confinement technique using nonlaminated thermoplastic CFRP straps was also investigated and applied to 2?m high RC columns. These results are encouraging, although practical and theoretical problems remain to be solved before these techniques can be fully applied.  相似文献   

7.
One disadvantage of most available stress–strain models for concrete confined with fiber-reinforced polymer (FRP) composites is that they do not take into consideration the interaction between the internal lateral steel reinforcement and the external FRP sheets. According to most structural concrete design codes, concrete columns must contain minimum amounts of longitudinal and transverse reinforcement. Therefore, concrete columns that have to be retrofitted (and therefore confined) with FRP sheets usually contain lateral steel. Hence, the retrofitted concrete column is under two actions of confinement: the action due to the FRP and that due to the steel ties. This paper presents a new designed-oriented confinement model for the axial and lateral behavior of circular concrete columns confined with steel ties, FRP composites, and both steel ties and FRP composites. Comparison with experimental results of confined concrete stress–strain curves shows good agreement between the test and predicted results.  相似文献   

8.
This paper presents the experimental and theoretical results of small and medium-scale concrete-filled fiber-reinforced polymer (FRP) tube (CFFT) columns. A total of 23 CFFT specimens were tested under axial compression load. Five different types of new FRP tubes were used as stay-in-place formwork for the columns. The effects of the following parameters were examined: the FRP-confinement ratio, the unconfined concrete compressive strength, the presence of longitudinal steel reinforcement, and the height-to-diameter ratio. Comparisons between the experimental test results and the theoretical prediction values by the three North American codes and design guidelines (ACI 440.2R-08, CSA-S6-06, and CSA-S806-02) are performed in terms of confined concrete strength and ultimate load carrying capacity. The results of this investigation indicate that the design equations of the ACI 440.2R-08, CAN/CSA-S6-06, and CAN/CSA-S806-02 overestimate the factored axial load capacity of the short CFFT columns as compared to the yield and crack load levels. Also, the CAN/CSA-S6-06 and CAN/CSA-S806-02 confinement models showed conservative predictions, while the ACI 440.2R-08 was slightly less conservative. A new confinement model is proposed for the confined concrete compressive strength of the CFFT cylinders. Also, the design equations are modified to accurately predict the ultimate and yield load capacities of internally reinforced and unreinforced short CFFT columns. Two new factors are introduced in the modified equations, (kcc) accounts for the in-place-strength of CFFT columns to CFFT cylinder strength, and (kcr) accounts for the initiation of the steel yielding and concrete cracking for the FRP-confined columns.  相似文献   

9.
Impact tests using drop-weight pendulum on nine 1.2-m-high full-scale concrete masonry block walls were conducted to investigate the out-of-plane impact behavior of unreinforced masonry (URM) walls externally strengthened with carbon-fiber-reinforced polymer (CFRP) composites. Three strengthening schemes on one side of the wall were studied: continuous unidirectional and continuous woven sheets, discrete strips in a vertical pattern, and discrete strips in orthogonal and diagonal patterns. All walls were vertically positioned resting on a knife-edge support with one face leaning against two steel rollers close to the upper and lower edges of the wall. The impact load was applied at the wall center through a drop-weight pendulum impact tester with various drop heights. Test results revealed that using composite laminates or strips could significantly improve the impact performance of URM walls. The wall strengthened with continuous woven sheets performed better than the one with unidirectional sheet. With the same amount of fiber-reinforced polymer strip material, the wall with narrower but more closely spaced strips performed slightly better than the one with wider strips.  相似文献   

10.
The paper aims to contribute to a better understanding of the behavior of reinforced concrete columns confined with fiber-reinforced polymer (FRP) sheets. In particular, some new insights on interaction mechanisms between internal steel reinforcement and external FRP strengthening and their influence on efficiency of FRP confinement technique are given. In this context a procedure to generate the complete stress-strain response including new analytical proposals for (1) effective confinement pressure at failure; (2) peak stress; (3) ultimate stress; (4) ultimate axial strain; and (5) axial strain corresponding to peak stress for FRP confined elements with circular and rectangular cross sections, with and without internal steel reinforcement, is presented. Interaction mechanisms between internal steel reinforcement and external FRP strengthening, shown by some experimental results obtained at the University of Padova with accurate measurements, are taken into account in the analytical model. Four experimental databases regarding FRP confined concrete columns, with circular and rectangular cross section with and without steel reinforcement, are gathered for the assessment of some of the confinement models shown in literature and the new proposed model. The proposed model shows a good performance and analytical stress-strain curves approximate some available test results quite well.  相似文献   

11.
This study concentrates on analytical evaluation of the effect of external confinement using fiber reinforced polymers (FRP) sheets on the response of concrete rectangular columns designed for gravity load only and having spliced longitudinal reinforcement at the column base. A general analytical scheme for evaluating the strength capacity and ductility of the columns under combined flexural–axial loads was developed. The analysis takes into account the bond strength degradation of the spliced reinforcement with increase in lateral load by incorporating a generalized bond stress–slip law, and considers the effect of FRP confinement on the stress–strain response of concrete material. Particular emphasis is placed in the analysis on the slip response of the spliced bars and the consequent fixed end rotation that develops at the column base. Results predicted by the analysis showed very good agreement with limited experimental data. A parametric evaluation was carried out to evaluate the effect of different design and strength parameters on the column response under lateral load. Without confinement, the columns suffered premature bond failure and, consequently, low flexural strength capacity. Confining the concrete in the columns end zone at the splice location with FRP sheets enhanced the bond strength capacity of the spliced reinforcement, increased the steel stress that can be mobilized before bond failure occurs, and consequently improved the flexural strength capacity and ductility of the columns. A general design equation, expressed as a function of the main parameters that influence the bond strength capacity between spliced steel bars and FRP confined concrete, is proposed to calculate the area of FRP sheets needed for strengthening of the subject columns.  相似文献   

12.
This paper presents an experimental and nonlinear finite-element analysis (NLFEA) results of circular short reinforced concrete (RC) columns confined externally with carbon fiber-reinforced polymers (CFRP) subjected to pure axial loading. The experimental program involves the fabrication and testing of 55 specimens wrapped with different number and configuration of CFRP sheet layers in the transverse and longitudinal directions. In addition, the columns were modeled using NLFEA. After reasonable validation of NLFEA with the experimental test results of companion columns and available technical literature results, NLFEA was expanded to provide a parametric study of 96 columns that correlates the ultimate axial stress of CFRP-confined RC columns to unconfined strength of concrete (fco), the volumetric ratio of CFRP (ρf), and the size effect. Results indicated that the ultimate capacity and ductility increase with the increase in volumetric ratio of CFRP (ρf) and unconfined strength of concrete (fco). In addition, the results indicated that size effect exists and the confinement effectiveness was more pronounced for columns with low fco and ρf.  相似文献   

13.
Numerical analyses are performed to predict the stress–strain behavior of square reinforced concrete columns strengthened by fiber-reinforced polymer (FRP) sheet confinement. The research focuses on the contribution of FRP sheets to the prevention of elastic buckling of longitudinal steel bars under compression, in cases of inadequate stirrup spacing. A new Drucker–Prager-type plasticity model is proposed for confined concrete and is used in constructed finite-element model. Suitable plasticity and elasticity models are used for steel reinforcing bars and fiber-reinforced polymers correspondingly. The finite-element analyses results are compared against published experimental results of columns subjected to axial compression, to validate the proposed finite-element model. Stress concentrations in concrete core and on FRP jacket are investigated considering circular or square sectioned, plain or reinforced concrete columns. Geometry of the section as well as the presence of steel bars and stirrups affect remarkably the variation and magnitude of stress on FRP as percentage of its tensile strength.  相似文献   

14.
The research focused on the effects of low velocity impact loading on high-strength concrete confined by a prefabricated polypropylene jacket and comparing the results with similar specimens confined by carbon fiber-reinforced polymer (CFRP) composites. In order to accomplish this, both static and dynamic load tests were performed. Concrete cylinders were used for static loading. Twelve concrete cylinders were prepared for static load testing: three were plain concrete and used as control specimens, three were wrapped with one layer of unidirectional CFRP composites, and six were confined by the polypropylene jacket. The thickness of the polypropylene wrap was machined to different thicknesses; three 3?mm and three 6?mm. The cylinders were standard (D×H) 152?mm×305?mm. Cylinders were loaded to failure in uniaxial compression using a Tinius-Olsen Universal Testing Machine. Impact testing was performed using four (D×H) 152?mm×914?mm columns. The columns consisted of one control sample; one CFRP composites wrapped, and two (one of each thickness) wrapped with polypropylene. Impact testing was conducted using an Instron drop-tower testing machine.  相似文献   

15.
Structural Upgrading of Masonry Columns by Using Composite Reinforcements   总被引:3,自引:0,他引:3  
Emerging techniques that use fiber-reinforced polymer (FRP) composites for strengthening and conservation of historic masonry are becoming increasingly accepted. In the last decades steel plates or wood frames were used for external confinement in containing the lateral dilation of masonry columns subjected to axial loads. In the last years FRP epoxy bonded strips or jackets were also employed to increase strength and ductility with encouraging results in terms of mechanical behavior and cost effectiveness. The behavior of masonry columns confined with FRP and subjected to axial compression is studied in this paper. An extended experimental investigation is presented in order to show the mechanical behavior of circular masonry columns built with calcareous blocks that may be commonly found in Italy and all over Europe in historical buildings. Different stacking schemes were used to build the columns, aiming to simulate the most common situations in existing masonry structures. Carbon FRP sheets were applied as external reinforcement; different amounts and different schemes of confining reinforcement were studied. The experiments include a new reinforcement technique made by using injected FRP bars through the columns cross section. Such a solution can be considered in place of a more traditional confinement, when external reinforcement must be avoided, or in addition to external reinforcement when an improved confinement effect is required. The structural behavior of masonry columns damaged under different levels of load and strengthened by using FRP reinforcements, was also investigated. Experimental results revealed the effectiveness of the FRP confinement for masonry columns, also for columns that were strongly predamaged before strengthening. A computation of the ultimate load was conducted using the Italian National Research Council recommendations to show an application of the design approach recently proposed in Italy. An existing analytical model, previously developed by the writers, was applied for computation of expected experimental values.  相似文献   

16.
This paper presents results of a comprehensive experimental investigation on the behavior of axially loaded short rectangular columns that have been strengthened with carbon fiber-reinforced polymer (CFRP) wrap. Six series, a total of 90 specimens, of uniaxial compression tests were conducted on rectangular and square short columns. The behavior of the specimens in the axial and transverse directions is investigated. The parameters considered in this study are (1) the concrete strength; (2) the aspect ratio of the cross section; and (3) the number of CFRP layers. The findings of this research can be summarized as follows: The CFRP wrapping enhances the compressive strength and the ductility of both square and rectangular columns, but to a lesser degree than that of circular columns. The ultimate strength and the ductility of the CFRP confined concrete increase with increasing number of confining layers. The increase in strength and ductility is more significant for lower strength concrete, representing poor or degraded concrete, than for normal-to-high strength concrete; that is, the maximum gain in strength that can be achieved for 3 ksi concrete wrapped columns is approximately 90%, as compared to only 30% for 6 ksi concrete wrapped columns. The CFRP confining jacket must be sufficiently stiff to develop appropriate confining forces at relatively low axial strain levels. The gain in compressive strength obtained by the CFRP confined concrete depends mainly on the relative stiffness of the CFRP jacket to the axial stiffness of the column.  相似文献   

17.
The use of high-strength concrete (HSC) in seismically active regions poses a major concern because of the brittle nature of material. The confinement requirements for HSC columns may be prohibitively stringent when ordinary grade transverse steel reinforcement is used. An alternative to conventional confinement reinforcement is the use of fiber-reinforced polymer (FRP) tubes in the form of stay-in-place formwork which can fulfill multiple functions of: (1) formwork; (2) confinement reinforcement; and (3) protective shell against corrosion, weathering and chemical attacks. The use of stay-in-place FRP formwork is investigated as concrete confinement reinforcement for HSC and normal strength concrete (NSC) columns with circular cross sections. Large-scale specimens with 270?mm circular cross-sections and different concrete strengths were tested under constant axial compression and incrementally increasing lateral deformation reversals. FRP tubes were manufactured from carbon fiber sheets and epoxy resin. The results indicate that inelastic deformability of HSC and NSC columns can be improved significantly by using FRP tubes, beyond the performance level usually expected of comparable columns confined with conventional steel reinforcement.  相似文献   

18.
In recent years, a strengthening technique based on near-surface mounted (NSM) laminate strips of carbon-fiber-reinforced polymer (CFRP) has been used to increase the load-carrying capacity of concrete and masonry structures by introducing laminate strips into precut grooves on the concrete cover of the elements to be strengthened. The high experimentally derived levels of strength efficacy with concrete columns, beams, and masonry panels have presented NSM as a viable and promising technique. This practice requires no surface preparation work and, after cutting the groove, requires minimal installation time compared to the externally bonded reinforcing technique. A further advantage associated with NSM CFRP is its ability to significantly reduce the probability of harm resulting from fire, acts of vandalism, mechanical damage, and aging effects. To assess the bond behavior of CFRP to concrete, pullout-bending tests have been carried out. The influences of bond length and concrete strength on bond behavior are analyzed, the tests are described, and the results are presented and discussed in detail. Finally, a local stress-slip relationship is determined based on both experimental results and a numerical strategy.  相似文献   

19.
This paper presents the results of experimental and analytical studies carried out to investigate the flexural behavior of reinforced concrete beams strengthened with end-anchored partially bonded carbon fiber-reinforced polymer (CFRP) strips. A total of six beams, each 2400 mm long, 150 mm wide, and 250 mm deep with a tension steel reinforcement ratio of 1.18%, were tested. One beam was left unstrengthened as the control, another beam was strengthened with a fully bonded CFRP strip, and the remaining four beams were strengthened with partially bonded CFRP strips placed on the tension face of the beam and fixed at both ends using a mechanical anchor. The influence of varying the CFRP unbonded length (250 mm, 750 mm, 2×500 mm, and 1,250 mm) on the beam flexural response was studied. The experimental results revealed that end-anchored partially bonded CFRP strips significantly enhanced the ultimate capacity of the control beam and performed better than the fully bonded strip with no end-anchorage. This observation stresses the importance of end-anchorage in such strengthening schemes, especially considering that the end-anchored partially bonded CFRP strengthened beams showed similar flexural behavior trends. Finally, an inelastic section analysis procedure that takes into consideration the incompatibility of strains was developed to verify the obtained test results. The analysis produced good predictions of the experimental results in terms of the moment-curvature response and showed the effect of CFRP unbonded length on the strain of the internal tension steel.  相似文献   

20.
Fiber reinforced polymer (FRP) materials are currently produced in different configurations and are widely used for the strengthening and retrofitting of concrete structures and bridges. Recently, considerable research has been directed to characterize the use of FRP bars and strips as near surface mounted reinforcement, primarily for strengthening applications. Nevertheless, in-depth understanding of the bond mechanism is still a challenging issue. This paper presents both experimental and analytical investigations undertaken to evaluate bond characteristics of near surface mounted carbon FRP (CFRP) strips. A total of nine concrete beams, strengthened with near surface mounted CFRP strips were constructed and tested under monotonic static loading. Different embedment lengths were used to evaluate the development length needed for effective use of near surface mounted CFRP strips. A closed-form analytical solution is proposed to predict the interfacial shear stresses. The model is validated by comparing the predicted values with test results as well as nonlinear finite element modeling. A quantitative criterion governing the debonding failure of near surface mounted CFRP strips is established. The influence of various parameters including internal steel reinforcement ratio, concrete compressive strength, and groove width is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号