首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
利用响应面法优化超声波提取苦豆子多糖最佳工艺条件。在单因素实验的基础上,以超声提取时间、超声功率、提取温度、水料比为自变量,以苦豆子多糖得率为响应值,做四因素三水平响应面回归分析。通过分析各因素的显著性和交互作用,优化得到苦豆子多糖的超声波提取最佳工艺条件为:超声时间30 min,超声功率280 W,提取温度50℃,水料比50:1,此条件下多糖得率为8.51%,与理论预测值无显著性差异。因此,采用响应面法分析优化苦豆子多糖的超声波提取工艺稳定可行。超声波提取苦豆子多糖与传统热水提取苦豆子多糖工艺相比,提取时间明显缩短,提取温度降低,多糖得率提高。采用红外吸收光谱、紫外吸收光谱以及气相色谱对多糖结构进行初步分析,确定苦豆子多糖的理化性质。  相似文献   

2.
《食品与发酵工业》2015,(8):224-228
为提高多糖提取率,以提取温度、时间、次数和水料比为考察因素,采取响应面法优化和建立长根菇子实体多糖的提取工艺。在单因素试验基础上,根据中心组合原理,采用三水平三因素法,确定各工艺条件的最佳条件。研究结果表明:响应面法对长根菇多糖的提取条件进行优化合理可行,最佳提取工艺为提取次数3次、提取温度84℃、提取时间2.3 h、水料比20∶1(m L∶g)。此时多糖提取率达5.85%,为长根菇多糖的纯化和工业化生产提供依据。  相似文献   

3.
利用响应面分析法优化鸡枞菌多糖提取工艺.以鸡枞菌多糖提取率为指标,考察浸提温度、时间、液固比、提取次数对鸡枞菌多糖提取的影响,然后根据中心组合( Box-Benhnken)原理采用三水平三因素的分析法,依据回归确定各工艺条件的影响因素,以鸡枞菌多糖提取率为响应面和等高线,分析各个因素的显著性和交互作用,优化得到鸡枞菌多糖的最佳工艺条件为提取温度87℃、提取时间2.9h、水料比31∶1(mL/g),多糖最大提取率达16.88%.  相似文献   

4.
采用响应面分析法对水飞蓟多糖的提取工艺进行优化。在单因素试验的基础上,根据Box-Benhnken中心组合试验设计原理,以水料比、提取温度、提取时间为自变量,多糖提取率为响应值,采用3因素3水平响应面分析法进行分析。试验结果表明,水飞蓟多糖的最佳提取工艺为:水料比35∶1(m L/g)、提取温度73℃、提取时间3.75h。在此条件下,多糖提取率可达到6.58%。  相似文献   

5.
目的:优化杏鲍菇菌糠多糖的提取工艺。方法:在单因素试验基础上根据Box-Behnken 中心组合试验设计原理,采用三因素三水平响应面分析法,依据回归分析确定各工艺条件的影响因素。结果:杏鲍菇菌糠多糖提取的最佳工艺条件为提取温度88℃、提取时间8.5h、水料比57:1(mL/g),多糖最大提取率6.43%。结论:响面 优化法能够提高杏鲍菇菌糠的多糖提取率。  相似文献   

6.
响应面法优选新疆红芪多糖提取工艺。以新疆红芪多糖提取率为参考指标,在提取温度、时间、料液比进行单因素实验的基础上,利用响应面法优选提取条件。最佳优化提取工艺为提取温度88.77℃,提取时间2.83 h,料液比1∶30.24(g/mL),在该优化条件下,新疆红芪精制多糖的实际提取率为3.56%。利用响应面法优化新疆红芪多糖提取工艺是合理可行的。  相似文献   

7.
针对鸡腿菇子实体多糖的提取,本实验以提取温度、提取时间,水料比和提取次数作为影响鸡腿菇子实体多糖提取率的因素,通过单因素试验选取因素与水平,根据Box-Benhnken中心组合试验设计原理,在单因素试验的基础上采用三因素三水平响应面分析法,依据回归分析确定各工艺条件的主要影响因素,以多糖提取为响应值作响应面和等值线图。结果表明,鸡腿菇子实体多糖水浸提的最佳工艺条件为:提取温度94.5℃,提取时间3.4h、水料比15.5:1,提取次数2次,鸡腿菇子实体多糖的提取率达到6.16%,较优化前最大值提高了7.13%。  相似文献   

8.
利用响应面分析法对野生山毛豆多糖的提取工艺进行优化.以浸提时间、浸提温度及水料比为响应因子,多糖提取得率为响应值,根据中心组合试验设计,做3因素3水平响应面分析.分析各个因素的显著性和交互作用,得出野生山毛豆多糖水浸提的最佳工艺条件为:浸提时间2.70 h,浸提温度为72 ℃,液料比23.4 mL/g,该条件下多糖提取率为16.83 mg/g.  相似文献   

9.
应用水提法对榆耳子实体中的多糖进行提取条件优化,以提高多糖提取率。依据单因素和Box-Behnken的试验设计,用响应面分析方法对水提法提取榆耳多糖的工艺进行优化研究。研究以榆耳多糖提取率为响应值,提取温度、提取时间、料液比和提取次数为试验因素。结果表明:水提法的最优提取工艺参数为提取温度84.925℃、提取时间3.477 h、料液比1∶50(g/m L)、提取次数为4次。在最优提取工艺参数下多糖的实际提取率为9.596%。其中影响榆耳多糖提取率的主次因素为:提取时间(B)提取温度(A)料液比(C)提取次数(D)。  相似文献   

10.
采用响应曲面法对超声波辅助水提取龙牙楤木芽多糖工艺进行优化,在单因素实验基础上,采用Box-Behnken试验设计原理进行4因素3水平试验设计,以龙牙楤木芽多糖提取率为响应值,选取超声功率、提取时间、提取温度、料液比为影响因子,通过响应面分析得到优化组合条件。结果表明,超声波辅助水提取龙牙楤木芽多糖最佳工艺参数为:提取温度70.4℃、提取时间67min、超声功率213W、料液比1∶33.4,在该工艺条件下龙牙楤木芽多糖提取率达4.81%。  相似文献   

11.
郭永霞  王丽艳  殷奎德 《食品科学》2010,31(14):116-119
目的:为充分利用山杏资源,对山杏果肉中水溶性多糖的提取工艺进行优化。方法:在单因素试验的基础上进行正交试验,利用响应面分析法进行工艺参数优化。结果:各因素的影响顺序为提取温度>提取时间>料液比;得到最佳工艺参数为料液比1:26(mg/mL)、提取时间2.8h、提取温度94℃,在此条件下,多糖提取率为3.44%。结论:采用正交设计- 响应面法优选山杏水溶多糖的工艺条件,实际值与预测值吻合度高,预测性良好,该优化工艺可行。  相似文献   

12.
为研究山豆根多糖的提取工艺及其抗氧化性,采用热水浸提法提取山豆根粗多糖(SGP),研究提取温度、提取时间、液料比对多糖得率的影响,在单因素实验基础上采用响应面法对山豆根粗多糖的提取工艺进行条件优化。将提取得到的粗多糖分级醇沉,并分别采用清除DPPH、ABTS+自由基及还原能力的方法对各醇沉组分多糖的抗氧化活性进行评估。结果表明,山豆根粗多糖的最佳提取工艺条件为:提取温度83℃,提取时间133 min,液料比30:1 mL/g。在此工艺条件下,山豆根粗多糖得率为3.98%。粗多糖经分级醇沉共获得SGP50、SGP70、SGP80和SGP90 4个组分,且SGP90表现出最强的抗氧化能力,尤其是在清除DPPH自由基方面,显著高于其它组分(P<0.05)。  相似文献   

13.
陈欣  龚兰  刘冠卉 《食品科学》2010,31(14):140-144
利用单因素和正交试验对4 种食用真菌多糖的提取工艺进行研究,并对其还原能力进行比较。结果表明:杏鲍菇多糖最佳提取工艺为提取温度90℃、料水比1:30(g/mL)、提取时间1h、乙醇体积分数为95%;香菇多糖最佳提取工艺为提取温度90℃、料水比1:20(g/mL)、提取时间3h、乙醇体积分数85%;金针菇多糖最佳提取工艺为提取温度80℃、料水比1:20(g/mL)、提取时间2h、乙醇体积分数95%;美味牛肝菌多糖最佳提取工艺为提取温度70℃、料水比1:40(g/mL)、提取时间4h、乙醇体积分数95%;经过工艺优化,4 种食用真菌多糖最高得率分别为3.89%、5.93%、2.79%、9.48%;4 种食用真菌多糖的还原能力均随着多糖质量浓度的提高而提高,而美味牛肝菌多糖的还原能力最强。与其他3 种食用真菌相比,经过提取工艺的优化,美味牛肝菌的多糖提取率最高,抗氧化能力最强。  相似文献   

14.
在单因素试验基础上,选取料液比、提取温度和提取时间3 项为考察因素,通过正交试验L9(33)优化薏苡仁多糖提取的最佳工艺条件;对薏苡仁多糖进行分离纯化,考察薏苡仁多糖的SephadexG-75 凝胶柱层析特性以及纯度鉴定。结果表明:料液比1:15(g/mL)、提取温度100℃、提取时间150min 为最佳提取条件,在最佳条件下薏苡仁多糖得率为5.53%;紫外扫描结果显示薏苡仁多糖中不含核酸和蛋白质。  相似文献   

15.
张涛  孙建  黄玲  娄恺 《食品科学》2010,31(20):31-36
采用单因素和正交试验,以多糖回收率为指标,对阿里红发酵液菌丝体胞内和发酵液胞外多糖提取工艺进行优化。结果表明,阿里红菌丝体胞内多糖提取的最佳工艺为超声波功率90W、超声时间15min、热水浸提温度90℃、干菌丝体与蒸馏水质量比为1:20、浸提时间3h,每克干菌丝体可提取胞内多糖66.4mg。发酵液胞外多糖的最佳提取工艺为乙醇体积分数60%、沉淀温度4℃、发酵液pH 值中性、沉淀时间24h,最高得率可达92.1%。  相似文献   

16.
响应面分析法优化龙眼核中多酚物质提取工艺   总被引:2,自引:0,他引:2  
目的:利用响应面法对龙眼核中多酚物质的提取工艺进行优化。方法:在单因素试验基础上选取试验因素与水平,根据Box-Behnken Design(BBD)试验设计原理采用三因素三水平的响应面分析法,依据回归分析确定各工艺条件的影响因素,以龙眼核多酚物质含量为响应值作响应面和等高线图。结果:在分析各个因素的显著性和交互作用后,得出龙眼核多酚物质浸提的最佳工艺条件为乙醇体积分数70%、浸提温度77.4℃、浸提时间4h、料水比1:20(g/mL)、浸提2次,以焦性没食子酸为标准品,龙眼核多酚物质一次提取含量可达21.7079mg/g。结论:曲面回归方程与实验结果拟合性好,此模型合理可靠,可用于实际预测。  相似文献   

17.
为探讨败酱草中多糖的提取工艺,分析提取时间、料水比、提取温度因素对败酱草多糖提取率的影响,以L9(34)正交试验方法优化多糖的提取工艺,然后在该工艺条件下考察不同部位、不同采摘时期败酱草中多糖提取率的动态变化,同时也对超声波在提取败酱草中多糖的效果进行探索。结果表明:提取时间、料水比、提取温度对败酱草多糖提取率均有影响;败酱草中多糖提取的最佳工艺条件为以1:20 的料水比在80℃条件下提取2h;引入超声波技术后,提取多糖的提取率有所提高;同时发现败酱草嫩叶中多糖的提取率最高。  相似文献   

18.
在单因素试验基础上,采用响应面分析法优化猪肚菇子实体中水溶性多糖的超声提取工艺。结果表明,在提取温度72℃、料液比1:44、浸提时间57min的最佳提取工艺条件下,响应面拟和所得方程对猪肚菇多糖的最大提取率预测值78.22mg/g,实测值75.79mg/g,实测结果与预测值符合良好。  相似文献   

19.
以长白山人参茎叶为原料,采用水提醇沉淀法提取人参茎叶中的多糖,用苯酚-硫酸法测定多糖的含量。以多糖提取率为指标,通过单因素试验和正交试验设计对提取工艺进行优化。评价提取温度、提取时间、料液比、p H值4个因素对多糖提取效果的影响,并确定最优提取工艺为:提取温度90℃,提取时间4 h,料液比1∶25(g/mL)、p H 5.0。在此条件下,人参茎叶多糖的提取率为5.64%。  相似文献   

20.
为了探索松乳菇菌丝体多糖的最佳提取工艺,并对其多糖进行体外抗氧化活性初步研究。采用超声波辅助浸提的方法,以温度、时间、料液比和次数进行单因素实验;在此基础之上,利用Box-Benhnken方法进行四因素三水平实验设计,以多糖得率为响应值,进行响应面分析;通过测定多糖清除DPPH自由基、OH自由基和O2-自由基的能力来评价其抗氧化活性,并与维生素C进行对比。结果表明,松乳菇多糖最佳提取工艺条件为:提取温度92.8 ℃、提取时间1.6 h、料液比1:28 (g:mL)和提取次数3次,此条件下松乳菇多糖得率预测值为10.60%,实测值为10.41%,与预测值相对误差为1.79%,说明优化工艺可行。松乳菇多糖对DPPH自由基、OH自由基和O2-自由基都具有一定的清除能力,其IC50值分别为0.855,1.147,1.126 mg/mL;但与维生素C比较,其抗氧化活性较弱。热水浸提法提取松乳菇多糖高效、简单、低成本,可用作松乳菇多糖的提取工艺;松乳菇多糖具有明显的体外抗氧化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号