首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report progress on the NL versus UL problem.
  • We show that counting the number of s-t paths in graphs where the number of s-v paths for any v is bounded by a polynomial can be done in FUL: the unambiguous log-space function class. Several new upper bounds follow from this including ${{{ReachFewL} \subseteq {UL}}}$ and ${{{LFew} \subseteq {UL}^{FewL}}}$
  • We investigate the complexity of min-uniqueness—a central notion in studying the NL versus UL problem. In this regard we revisit the class OptL[log n] and introduce UOptL[log n], an unambiguous version of OptL[log n]. We investigate the relation between UOptL[log n] and other existing complexity classes.
  • We consider the unambiguous hierarchies over UL and UOptL[log n]. We show that the hierarchy over UOptL[log n] collapses. This implies that ${{{ULH} \subseteq {L}^{{promiseUL}}}}$ thus collapsing the UL hierarchy.
  • We show that the reachability problem over graphs embedded on 3 pages is complete for NL. This contrasts with the reachability problem over graphs embedded on 2 pages, which is log-space equivalent to the reachability problem in planar graphs and hence is in UL.
  •   相似文献   

    2.
    3.
    The Contractibility problem takes as input two graphs G and H, and the task is to decide whether H can be obtained from G by a sequence of edge contractions. The Induced Minor and Induced Topological Minor problems are similar, but the first allows both edge contractions and vertex deletions, whereas the latter allows only vertex deletions and vertex dissolutions. All three problems are NP-complete, even for certain fixed graphs H. We show that these problems can be solved in polynomial time for every fixed H when the input graph G is chordal. Our results can be considered tight, since these problems are known to be W[1]-hard on chordal graphs when parameterized by the size of H. To solve Contractibility and Induced Minor, we define and use a generalization of the classic Disjoint Paths problem, where we require the vertices of each of the k paths to be chosen from a specified set. We prove that this variant is NP-complete even when k=2, but that it is polynomial-time solvable on chordal graphs for every fixed k. Our algorithm for Induced Topological Minor is based on another generalization of Disjoint Paths called Induced Disjoint Paths, where the vertices from different paths may no longer be adjacent. We show that this problem, which is known to be NP-complete when k=2, can be solved in polynomial time on chordal graphs even when k is part of the input. Our results fit into the general framework of graph containment problems, where the aim is to decide whether a graph can be modified into another graph by a sequence of specified graph operations. Allowing combinations of the four well-known operations edge deletion, edge contraction, vertex deletion, and vertex dissolution results in the following ten containment relations: (induced) minor, (induced) topological minor, (induced) subgraph, (induced) spanning subgraph, dissolution, and contraction. Our results, combined with existing results, settle the complexity of each of the ten corresponding containment problems on chordal graphs.  相似文献   

    4.
    Reachability and shortest path problems are NL-complete for general graphs. They are known to be in L for graphs of tree-width 2 (Jakoby and Tantau in Proceedings of FSTTCS’07: The 27th Annual Conference on Foundations of Software Technology and Theoretical Computer Science, pp. 216–227, 2007). In this paper, we improve these bounds for k-trees, where k is a constant. In particular, the main results of our paper are log-space algorithms for reachability in directed k-trees, and for computation of shortest and longest paths in directed acyclic k-trees. Besides the path problems mentioned above, we also consider the problem of deciding whether a k-tree has a perfect matching (decision version), and if so, finding a perfect matching (search version), and prove that these two problems are L-complete. These problems are known to be in P and in RNC for general graphs, and in SPL for planar bipartite graphs, as shown in Datta et al. (Theory Comput. Syst. 47:737–757, 2010). Our results settle the complexity of these problems for the class of k-trees. The results are also applicable for bounded tree-width graphs, when a tree-decomposition is given as input. The technique central to our algorithms is a careful implementation of the divide-and-conquer approach in log-space, along with some ideas from Jakoby and Tantau (Proceedings of FSTTCS’07: The 27th Annual Conference on Foundations of Software Technology and Theoretical Computer Science, pp. 216–227, 2007) and Limaye et al. (Theory Comput. Syst. 46(3):499–522, 2010).  相似文献   

    5.
    Zeev Nutov 《Algorithmica》2014,70(2):340-364
    We consider Degree Constrained Survivable Network problems. For the directed Degree Constrained k -Edge-Outconnected Subgraph problem, we slightly improve the best known approximation ratio, by a simple proof. Our main contribution is giving a framework to handle node-connectivity degree constrained problems with the iterative rounding method. In particular, for the degree constrained versions of the Element-Connectivity Survivable Network problem on undirected graphs, and of the k -Outconnected Subgraph problem on both directed and undirected graphs, our algorithm computes a solution J of cost O(logk) times the optimal, with degrees O(2 k )?b(v). Similar result are obtained for the k -Connected Subgraph problem. The latter improves on the only degree approximation O(klogn)?b(v) in O(n k ) time on undirected graphs by Feder, Motwani, and Zhu.  相似文献   

    6.
    The uml Profile for Modeling and Analysis of Real-Time and Embedded (RTE) systems has recently been adopted by the OMG. Its Time Model extends the informal and simplistic Simple Time package proposed by Unified Modeling Language (UML2) and offers a broad range of capabilities required to model RTE systems including discrete/dense and chronometric/logical time. The Marte specification introduces a Time Structure inspired from several time models of the concurrency theory and proposes a new clock constraint specification language (ccsl) to specify, within the context of the uml, logical and chronometric time constraints. A semantic model in ccsl is attached to a (uml) model to give its timed causality semantics. In that sense, ccsl is comparable to the Ptolemy environment, in which directors give the semantics to models according to predefined models of computation and communication. This paper focuses on one historical model of computation of Ptolemy [Synchronous Data Flow (SDF)] and shows how to build SDF graphs by combining uml models and ccsl.  相似文献   

    7.
    We report on the formalization of two classical results about claw-free graphs, which have been verified correct by Jacob T. Schwartz’s proof-checker Referee. We have proved formally that every connected claw-free graph admits (1) a near-perfect matching, (2) Hamiltonian cycles in its square. To take advantage of the set-theoretic foundation of Referee, we exploited set equivalents of the graph-theoretic notions involved in our experiment: edge, source, square, etc. To ease some proofs, we have often resorted to weak counterparts of well-established notions such as cycle, claw-freeness, longest directed path, etc.  相似文献   

    8.
    By terms-allowed-in-formulas capacity, Artemov’s Logic of Proofs LP Artemov includes self-referential formulas of the form t:?(t) that play a crucial role in the realization of modal logic S4 in LP, and in the Brouwer–Heyting–Kolmogorov semantics of intuitionistic logic via LP. In an earlier work appeared in the Proceedings of CSR 2010 the author defined prehistoric loop in a sequent calculus of S4, and verified its necessity to self-referentiality in S4?LP realization. In this extended version we generalize results there to T and K4, two modal logics smaller than S4 that yet call for self-referentiality in their realizations into corresponding justification logics JT and J4.  相似文献   

    9.
    Regular expressions (RE) are an algebraic formalism for expressing regular languages, widely used in string search and as a specification language in verification. In this paper, we introduce and investigate visibly rational expressions (VRE), an extension of RE for the class of visibly pushdown languages (VPL). We show that VRE capture precisely the class of VPL. Moreover, we identify an equally expressive fragment of VRE which admits a quadratic time compositional translation into the automata acceptors of VPL. We also prove that, for this fragment, universality, inclusion and language equivalence are EXPTIME-complete. Finally, we provide an extension of VRE for VPL over infinite words.  相似文献   

    10.
    We study the problem of packing element-disjoint Steiner trees in graphs. We are given a graph and a designated subset of terminal nodes, and the goal is to find a maximum cardinality set of element-disjoint trees such that each tree contains every terminal node. An element means a non-terminal node or an edge. (Thus, each non-terminal node and each edge must be in at most one of the trees.) We show that the problem is APX-hard when there are only three terminal nodes, thus answering an open question. Our main focus is on the special case when the graph is planar. We show that the problem of finding two element-disjoint Steiner trees in a planar graph is NP-hard. Similarly, the problem of finding two edge-disjoint Steiner trees in a planar graph is NP-hard. We design an algorithm for planar graphs that achieves an approximation guarantee close to 2. In fact, given a planar graph that is k element-connected on the terminals (k is an upper bound on the number of element-disjoint Steiner trees), the algorithm returns $\lfloor\frac{k}{2} \rfloor-1$ element-disjoint Steiner trees. Using this algorithm, we get an approximation algorithm for the edge-disjoint version of the problem on planar graphs that improves on the previous approximation guarantees. We also show that the natural LP relaxation of the planar problem has an integrality ratio approaching?2.  相似文献   

    11.
    We strengthen a previously known connection between the size complexity of two-way finite automata ( ) and the space complexity of Turing machines (tms). Specifically, we prove that
  • every s-state has a poly(s)-state that agrees with it on all inputs of length ≤s if and only if NL?L/poly, and
  • every s-state has a poly(s)-state that agrees with it on all inputs of length ≤2 s if and only if NLL?LL/polylog.
  • Here, and are the deterministic and nondeterministic , NL and L/poly are the standard classes of languages recognizable in logarithmic space by nondeterministic tms and by deterministic tms with access to polynomially long advice, and NLL and LL/polylog are the corresponding complexity classes for space O(loglogn) and advice length poly(logn). Our arguments strengthen and extend an old theorem by Berman and Lingas and can be used to obtain variants of the above statements for other modes of computation or other combinations of bounds for the input length, the space usage, and the length of advice.  相似文献   

    12.
    Energy games belong to a class of turn-based two-player infinite-duration games played on a weighted directed graph. It is one of the rare and intriguing combinatorial problems that lie in NPco-NP, but are not known to be in P. The existence of polynomial-time algorithms has been a major open problem for decades and apart from pseudopolynomial algorithms there is no algorithm that solves any non-trivial subclass in polynomial time. In this paper, we give several results based on the weight structures of the graph. First, we identify a notion of penalty and present a polynomial-time algorithm when the penalty is large. Our algorithm is the first polynomial-time algorithm on a large class of weighted graphs. It includes several worst-case instances on which previous algorithms, such as value iteration and random facet algorithms, require at least sub-exponential time. Our main technique is developing the first non-trivial approximation algorithm and showing how to convert it to an exact algorithm. Moreover, we show that in a practical case in verification where weights are clustered around a constant number of values, the energy game problem can be solved in polynomial time. We also show that the problem is still as hard as in general when the clique-width is bounded or the graph is strongly ergodic, suggesting that restricting the graph structure does not necessarily help.  相似文献   

    13.
    We present the first polynomial-time approximation schemes (PTASes) for the following subset-connectivity problems in edge-weighted graphs of bounded-genus: Steiner tree, low-connectivity survivable-network design, and subset TSP. The schemes run in $\mathcal{O}(n \log n)$ time for graphs embedded on both orientable and nonorientable surfaces. This work generalizes the PTAS framework from planar graphs to bounded-genus graphs: any problem that is shown to be approximable by the planar PTAS framework of Borradaile et al. (ACM Trans. Algorithms 5(3), 2009) will also be approximable in bounded-genus graphs by our extension.  相似文献   

    14.
    The Mizar Mathematical Library is one of the largest libraries of formalized and mechanically verified mathematics. Its language is highly optimized for authoring by humans. As in natural languages, the meaning of an expression is influenced by its (mathematical) context in a way that is natural to humans, but harder to specify for machine manipulation. Thus its custom file format can make the access to the library difficult. Indeed, the Mizar system itself is currently the only system that can fully operate on the Mizar library. This paper presents a translation of the Mizar library into the OMDoc format (Open Mathematical Documents), an XML-based representation format for mathematical knowledge. OMDoc is geared towards machine support and interoperability by making formula structure and context dependencies explicit. Thus, the Mizar library becomes accessible for a wide range of OMDoc-based tools for formal mathematics and knowledge management. We exemplify interoperability by indexing the translated library in the MathWebSearch engine, which provides an “applicable theorem search” service (almost) out of the box.  相似文献   

    15.
    Dynamically adaptive systems (DAS) must cope with system and environmental conditions that may not have been fully understood or anticipated during development. RELAX is a fuzzy logic-based specification language for identifying and assessing sources of environmental uncertainty, thereby making DAS requirements more tolerant of unanticipated conditions. This paper presents AutoRELAX, an approach that automatically generates RELAXed goal models to address environmental uncertainty. Specifically, AutoRELAX identifies goals to RELAX, which RELAX operators to apply, and the shape of the fuzzy logic function that establishes the goal satisfaction criteria. AutoRELAX generates different solutions by making tradeoffs between minimizing the number of RELAXed goals and maximizing delivered functionality by reducing the number of adaptations triggered by minor and adverse environmental conditions. In a recent extension, AutoRELAX uses a stepwise adaptation of weights to balance these two competing concerns and thereby further improve the utility of AutoRELAX. We apply it to two industry-based applications involving network management and a robotic controller, respectively.  相似文献   

    16.
    In the uniform circuit model of computation, the width of a boolean circuit exactly characterizes the “space” complexity of the computed function. Looking for a similar relationship in Valiant’s algebraic model of computation, we propose width of an arithmetic circuit as a possible measure of space. In the uniform setting, we show that our definition coincides with that of VPSPACE at polynomial width. We introduce the class VL as an algebraic variant of deterministic log-space L; VL is a subclass of VP. Further, to define algebraic variants of non-deterministic space-bounded classes, we introduce the notion of “read-once” certificates for arithmetic circuits. We show that polynomial-size algebraic branching programs (an algebraic analog of NL) can be expressed as read-once exponential sums over polynomials in ${{\sf VL}, {\it i.e.}\quad{\sf VBP} \in \Sigma^R \cdot {\sf VL}}$ . Thus, read-once exponential sums can be viewed as a reasonable way of capturing space-bounded non-determinism. We also show that Σ R ·VBPVBP, i.e. VBPs are stable under read-once exponential sums. Though the best upper bound we have for Σ R ·VL itself is VNP, we can obtain better upper bounds for width-bounded multiplicatively disjoint (md-) circuits. Without the width restriction, md- arithmetic circuits are known to capture all of VP. We show that read-once exponential sums over md- constant-width arithmetic circuits are within VP and that read-once exponential sums over md- polylog-width arithmetic circuits are within VQP. We also show that exponential sums of a skew formula cannot represent the determinant polynomial.  相似文献   

    17.
    We study the problem of computing canonical forms for graphs and hypergraphs under Abelian group action and show tight complexity bounds. Our approach is algebraic. We transform the problem of computing canonical forms for graphs to the problem of computing canonical forms for associated algebraic structures, and we develop parallel algorithms for these associated problems.
    1. In our first result we show that the problem of computing canonical labelings for hypergraphs of color class size 2 is logspace Turing equivalent to solving a system of linear equations over the field $\mathbb {F} _{2}$ . This implies a deterministic NC 2 algorithm for the problem.
    2. Similarly, we show that the problem of canonical labeling graphs and hypergraphs under arbitrary Abelian permutation group action is fairly well characterized by the problem of computing the integer determinant. In particular, this yields deterministic NC 3 and randomized NC 2 algorithms for the problem.
      相似文献   

    18.
    We introduce two new natural decision problems, denoted as ? RATIONAL NASH and ? IRRATIONAL NASH, pertinent to the rationality and irrationality, respectively, of Nash equilibria for (finite) strategic games. These problems ask, given a strategic game, whether or not it admits (i) a rational Nash equilibrium where all probabilities are rational numbers, and (ii) an irrational Nash equilibrium where at least one probability is irrational, respectively. We are interested here in the complexities of ? RATIONAL NASH and ? IRRATIONAL NASH. Towards this end, we study two other decision problems, denoted as NASH-EQUIVALENCE and NASH-REDUCTION, pertinent to some mutual properties of the sets of Nash equilibria of two given strategic games with the same number of players. The problem NASH-EQUIVALENCE asks whether or not the two sets of Nash equilibria coincide; we identify a restriction of its complementary problem that witnesses ? RATIONAL NASH. The problem NASH-REDUCTION asks whether or not there is a so called Nash reduction: a suitable map between corresponding strategy sets of players that yields a Nash equilibrium of the former game from a Nash equilibrium of the latter game; we identify a restriction of NASH-REDUCTION that witnesses ? IRRATIONAL NASH. As our main result, we provide two distinct reductions to simultaneously show that (i) NASH-EQUIVALENCE is co- $\mathcal{NP}$ -hard and ? RATIONAL NASH is $\mathcal{NP}$ -hard, and (ii) NASH-REDUCTION and ? IRRATIONAL NASH are both $\mathcal{NP}$ -hard, respectively. The reductions significantly extend techniques previously employed by Conitzer and Sandholm (Proceedings of the 18th Joint Conference on Artificial Intelligence, pp. 765–771, 2003; Games Econ. Behav. 63(2), 621–641, 2008).  相似文献   

    19.
    We study a simple technique, originally presented by Herlihy (ACM Trans. Program. Lang. Syst. 15(5):745–770, 1993), for executing concurrently, in a wait-free manner, blocks of code that have been programmed for sequential execution and require significant synchronization in order to be performed in parallel. We first present an implementation of this technique, called Sim, which employs a collect object. We describe a simple implementation of a collect object from a single shared object that supports atomic Add (or XOR) in addition to read; this implementation has step complexity O(1). By plugging in to Sim this implementation, Sim exhibits constant step complexity as well. This allows us to derive lower bounds on the step complexity of implementations of several shared objects, like Add, XOR, collect, and snapshot objects, from LL/SC objects. We then present a practical version of Sim, called PSim, which is implemented in a real shared-memory machine. From a theoretical perspective, PSim has worse step complexity than Sim, its theoretical analog; in practice though, we experimentally show that PSim is highly-efficient: it outperforms several state-of-the-art lock-based and lock-free synchronization techniques, and this given that it is wait-free, i.e. that it satisfies a stronger progress condition than all the algorithms that it outperforms. We have used PSim to get highly-efficient wait-free implementations of stacks and queues.  相似文献   

    20.
    A UTP semantics for Circus   总被引:2,自引:2,他引:0  
    Circus specifications define both data and behavioural aspects of systems using a combination of Z and CSP constructs. Previously, a denotational semantics has been given to Circus; however, a shallow embedding of Circus in Z, in which the mapping from Circus constructs to their semantic representation as a Z specification, with yet another language being used as a meta-language, was not useful for proving properties like the refinement laws that justify the distinguishing development technique associated with Circus. This work presents a final reference for the Circus denotational semantics based on Hoare and He’s Unifying Theories of Programming (UTP); as such, it allows the proof of meta-theorems about Circus including the refinement laws in which we are interested. Its correspondence with the CSP semantics is illustrated with some examples. We also discuss the library of lemmas and theorems used in the proofs of the refinement laws. Finally, we give an account of the mechanisation of the Circus semantics and of the mechanical proofs of the refinement laws.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号