首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 991 毫秒
1.
Duchenne muscular dystrophy (DMD) is one of the most common and severe X-linked disorders with an incidence of approximately 1 in 3500 newborn males. In more than 60% of DMD patients, deletions of part or all of the dystrophin gene have been shown. Despite this, carrier detection still poses a problem in some cases, because of the enormous size of the gene and the lack of sufficient numbers of informative markers. Here, we report the isolation and characterization of two additional microsatellite markers (IVS44SK12 and IVS44SK21) in intron 44 of the dystrophin gene. Both markers are useful for carrier detection either by indirect DNA analysis or by direct proof of loss of heterozygosity.  相似文献   

2.
Interactions of myosin with actin filaments probably induce conformational changes in actin which are crucial for its function. Fluorescence resonance energy transfer spectroscopy can determine changes in distance (range 10-100 A) between two probes and therefore can sense conformational changes in proteins. We have investigated changes in the radial coordinates of fluorescent probes bound to Cys-374 of F-actin when either of the isozymes (S1A1 and S1A2) of myosin subfragment 1 (S-1) bind. Using 5-[[2-[(iodoacetyl)amino]ethyl]amino]naphthalene-1-sulfonic acid and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide as donor and acceptor probes, respectively, we calculated a radius of 13-14 A. This distance increased by approximately 4.5 A upon addition of S-1. No differences were detected between the effects of S1A1 and S1A2. This increase is reversed by MgATP. The average position of the probes on Cys-374 is closer to the filament axis than expected from the current models of F-actin. S-1 increases the radial position of Cys-374 either by direct interaction or via an allosteric conformational change associated with its binding.  相似文献   

3.
Synaptotagmin I is a synaptic vesicle protein that is thought to act as a Ca2+ sensor in neurotransmitter release. The first C2 domain of synaptotagmin I (C2A domain) contains a bipartite Ca2+-binding motif and interacts in a Ca2+-dependent manner with syntaxin, a central component of the membrane fusion complex. Analysis by nuclear magnetic resonance spectroscopy and site-directed mutagenesis shows that this interaction is mediated by the cooperative action of basic residues surrounding the Ca2+-binding sites of the C2A domain and is driven by a change in the electrostatic potential of the C2A domain induced by Ca2+ binding. A model is proposed whereby synaptotagmin acts as an electrostatic switch in Ca2+-triggered synaptic vesicle exocytosis, promoting a structural rearrangement in the fusion machinery that is effected by its interaction with syntaxin.  相似文献   

4.
5.
We compared the interaction between the insulin receptor (IR) and the IR substrate (IRS) proteins IRS-1 and IRS-2) using the yeast two-hybrid system. Both IRS proteins interact specifically with the cytoplasmic portion of the IR and the related insulin-like growth factor-I receptor, and these interactions require receptor tyrosine kinase activity. Alignment of IRS-1 and IRS-2 revealed two conserved domains at the NH2 terminus, called IH1PH and IH2PTB, which resemble a pleckstrin homology (PH) domain and a phosphotyrosine binding (PTB) domain, respectively. The IH2PTB binds to the phosphorylated NPXY motif (Tyr-960) in the activated insulin receptor, providing a specific mechanism for the interaction between the receptor and IRS-1. Although the IH2PTB of IRS-2 also interacts with the NPEY motif of the insulin receptor, it is not essential for the interaction between the insulin receptor and IRS-2 in the yeast two-hybrid system. IRS-2 contains another interaction domain between residues 591 and 786, which is absent in IRS-1. This IRS-2-specific domain is independent of the IH2PTB and does not require the NPEY motif; however, it requires a functional insulin receptor kinase and the presence of three tyrosine phosphorylation sites in the regulatory loop (Tyr-1146, Tyr-1150, and Tyr-1151). Importantly, this novel domain mediates the association between IRS-2 and insulin receptor lacking the NPXY motif and may provide a mechanism by which the stoichiometry of regulatory loop autophosphorylation enhances IRS-2 phosphorylation.  相似文献   

6.
Tat is an 86-amino acid protein involved in the replication of human immunodeficiency virus type 1 (HIV-1). Several studies have shown that exogenous Tat protein was able to translocate through the plasma membrane and to reach the nucleus to transactivate the viral genome. A region of the Tat protein centered on a cluster of basic amino acids has been assigned to this translocation activity. Recent data have demonstrated that chemical coupling of a Tat-derived peptide (extending from residues 37 to 72) to several proteins allowed their functional internalization into several cell lines or tissues. A part of this same domain can be folded in an alpha-helix structure with amphipathic characteristics. Such helical structures have been considered as key determinants for the uptake of several enveloped viruses by fusion or endocytosis. In the present study, we have delineated the main determinants required for Tat translocation within this sequence by synthesizing several peptides covering the Tat domain from residues 37 to 60. Unexpectedly, the domain extending from amino acid 37 to 47, which corresponds to the alpha-helix structure, is not required for cellular uptake and for nuclear translocation. Peptide internalization was assessed by direct labeling with fluorescein or by indirect immunofluorescence using a monoclonal antibody directed against the Tat basic cluster. Both approaches established that all peptides containing the basic domain are taken up by cells within less than 5 min at concentrations as low as 100 nM. In contrast, a peptide with a full alpha-helix but with a truncated basic amino acid cluster is not taken up by cells. The internalization process does not involve an endocytic pathway, as no inhibition of the uptake was observed at 4 degrees C. Similar observations have been reported for a basic amino acid-rich peptide derived from the Antennapedia homeodomain (1). Short peptides allowing efficient translocation through the plasma membrane could be useful vectors for the intracellular delivery of various non-permeant drugs including antisense oligonucleotides and peptides of pharmacological interest.  相似文献   

7.
8.
The cellulosome-integrating protein CipA, which serves as a scaffolding protein for the cellulolytic complex produced by Clostridium thermocellum, comprises a COOH-terminal duplicated segment termed the dockerin domain. This paper reports the cloning and sequencing of a gene, termed sdbA (for scaffoldin dockerin binding), encoding a protein which specifically binds the dockerin domain of CipA. The sequenced fragment comprises an open reading frame of 1,893 nucleotides encoding a 631-amino-acid polypeptide, termed SdbA, with a calculated molecular mass of 68,577 kDa. SAA comprises an NH2-terminal leader peptide followed by three distinct regions. The NH2-terminal region is similar to the NH2-terminal repeats of C. thermocellum OlpB and ORF2p. The central region is rich in lysine and harbors a motif present in Streptococcus M proteins. The COOH-terminal region consists of a triplicated sequence present in several bacterial cell surface proteins. The NH2-terminal region of SdbA and a fusion protein carrying the first NH2-terminal repeat of OlpB were shown to bind the dockerin domain of CipA. Thus, a new type of cohesin domain, which is present in one, two, and four copies in SdbA, ORF2p, and OlpB, respectively, can be defined. Since OlpB and most likely SdbA and ORF2p are located in the cell envelope, the three proteins probably participate in anchoring CipA (and the cellulosome) to the cell surface.  相似文献   

9.
Previous studies in this laboratory have shown that the ethanol inhibition of recombinant NMDA receptors expressed in Xenopus oocytes is subunit-dependent, with the NR1/2A receptor being more sensitive than NR1/2C receptors. The ethanol sensitivity of NR1/2A receptors is reduced by substitution of the wild-type NR1-1a (NR1(011)) subunit with the calcium-impermeable NR1 (N616R) subunit. In the present study, the ethanol inhibition of NMDA receptors was determined under different conditions to examine the role that calcium plays in determining the ethanol sensitivity of recombinant NMDA receptors. The ethanol sensitivity of NR1/2B or NR1/2C receptors was not affected by alterations in extracellular calcium levels or by coexpression with calcium-impermeable NR1 mutants. In contrast, the inhibition of NR1/2A receptors by 100 mM ethanol was reduced in divalent-free recording medium and was significantly increased when 10 mM calcium was used as the only charge carrier. The increase in the ethanol sensitivity of NR1/2A receptors under high-calcium conditions was prevented by preinjection of oocytes with the calcium chelator 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) but not by inhibitors of calmodulin or protein kinase C. Ethanol did not alter the channel blocking activity of divalent cations on NMDA-induced currents. The enhanced ethanol sensitivity of NR1/2A receptors in 10 mM calcium persisted when the NR1 subunit was replaced by the alternative splice variant NR1-4a (NR1(000)), which lacks the C1 and C2 cassettes. However, expression of a mutant NR1 subunit that lacked the C0, C1, and C2 domains abolished the calcium-dependent enhancement of ethanol's inhibition of NR1/2A receptors. Finally, the ethanol sensitivity of wild-type NR1/2A receptors measured in transfected HEK 293 cells by whole cell patch-clamp electrophysiology was significantly reduced by expression of the C-terminal truncated NR1 subunit. These results demonstrate that the ethanol sensitivity of certain NMDA receptors is modulated by an intracellular, calcium-dependent process that requires the C0 domain of the NR1 subunit.  相似文献   

10.
Fluoride concentration in whole saliva and in separate gland secretions was studied after a 7-day fluoridated milk regimen (1mg F per day) in 12 healthy schoolchildren aged 10-13 years. A 2-week fluoride-free run-in period preceded the tests in order to establish the endogenous baseline levels. Unstimulated and stimulated whole saliva and stimulated parotid and submandibular-sublingual saliva were collected at 1, 3, 6, 12 and 24h after F-milk ingestion, and fluoride concentrations were determined with an ion-selective electrode. Typical time-dependent excretion curves were obtained in all collected secretions. The fluoride levels were significantly elevated 1 and 3h in whole saliva and up to 6h in the gland secretions after intake of fluoridated milk when compared to baseline values. When acid-stimulated, the submandibular-sublingual glands were the major contributors of fluoride in the oral cavity. In conclusion, the results of this study demonstrate that fluoride ingested with milk is excreted through the salivary glands, indicating that the bioavailability of fluoride from milk equals that of other vehicles.  相似文献   

11.
The bovine papillomavirus type 1 (BPV-1) E6 oncoprotein can transform fibroblasts and induce anchorage-independent growth and disassembly of the actin stress fibers. We have previously shown that the E6 protein interacts with the focal adhesion protein, paxillin, suggesting a direct role of E6 in the disruption of the actin cytoskeleton. We have now mapped the E6 binding sites on paxillin to the LD motif repeats region, which has been implicated in mediating paxillin binding to two other focal adhesion proteins, vinculin and the focal adhesion kinase. The five LD motif repeats identified in paxillin do not contribute equally to its interaction with E6. The first LD repeat is most critical for paxillin binding to E6 both in vitro and in vivo. Furthermore, the binding of recombinant wild-type E6 protein to paxillin blocked the interaction of several cellular proteins with paxillin, including vinculin and the focal adhesion kinase. A mutant E6 protein (H105) which does not bind to paxillin had no effect on the binding of these cellular proteins to paxillin. These data suggest that E6 disruption of the actin stress fibers occurs through blocking the interaction of paxillin with its cellular effectors such as vinculin and the focal adhesion kinase.  相似文献   

12.
Utrophin is a close homologue of dystrophin, the protein defective in Duchenne muscular dystrophy. Like dystrophin, it is composed of three regions: an N-terminal region that binds actin filaments, a large central region with triple coiled-coil repeats, and a C-terminal region that interacts with components in the dystroglycan protein complex at the plasma membrane. The N-terminal actin-binding region consists of two calponin homology domains and is related to the actin-binding domains of a superfamily of proteins including alpha-actinin, spectrin and fimbrin. Here, we present the 2.0 A structure of the second calponin homology domain of utrophin solved by X-ray crystallography, and compare it to the other calponin homology domains previously determined from spectrin and fimbrin.  相似文献   

13.
14.
15.
16.
LIM-kinase 1 (LIMK1) and 2 (LIMK2) are members of a novel class of protein kinases containing two LIM motifs at the N-terminus. The LIM motif is thought to be involved in protein-protein interactions. We report here evidence that LIMK1 self-associates and also associates with LIMK2. In vivo and in vitro binding analyses using variously deleted mutants of LIMKI revealed that the self-association of LIMK1 was caused by interaction between the N-terminal LIM domain and the C-terminal kinase domain. The association of LIMK1 with itself and with LIMK2 is important for understanding how activities and functions of LIMK family kinases are regulated.  相似文献   

17.
NG2 is a membrane-spanning proteoglycan with a primary structure unique among cell surface or extracellular matrix proteins. To characterize the interaction between NG2 and extracellular matrix proteins, we have used a eukaryotic expression system to produce and purify several recombinant fragments covering not only the entire ectodomain of NG2 but also distinct subdomains of the molecule. Using a solid phase binding assay with various extracellular matrix proteins, we have identified two main ligands for NG2, namely, collagens V and VI. Consistent with previous models of glycosaminoglycan attachment, roughly 50% of the recombinant NG2 fragments containing the central domain have chondroitin sulfate chains attached to the protein core. These glycosaminoglycan chains are not directly involved in collagen binding, since chondroitinase-treated fragments exhibit an unimpaired ability to bind to both collagens. Using more restricted recombinant fragments of NG2, we mapped the binding site for both collagens to the central domain of NG2. Electron microscopy after rotary shadowing of native NG2 molecules indicates that this extended nonglobular domain provides a flexible connection joining the two N- and C-terminal globular regions of NG2. Rotary shadowing of mixtures of NG2 and collagen V or VI confirms a direct interaction between the molecules and indicates that the collagens align with the central region of NG2, giving the appearance of a rod between the N- and C-terminal globules.  相似文献   

18.
Axin is a negative regulator of embryonic axis formation in vertebrates, which acts through a Wnt signal transduction pathway involving the serine/threonine kinase GSK-3 and beta-catenin. Axin has been shown to have distinct binding sites for GSK-3 and beta-catenin and to promote the phosphorylation of beta-catenin and its consequent degradation. This provides an explanation for the ability of Axin to inhibit signaling through beta-catenin. In addition, a more N-terminal region of Axin binds to adenomatous polyposis coli (APC), a tumor suppressor protein that also regulates levels of beta-catenin. Here, we report the results of a yeast two-hybrid screen for proteins that interact with the C-terminal third of Axin, a region in which no binding sites for other proteins have previously been identified. We found that Axin can bind to the catalytic subunit of the serine/threonine protein phosphatase 2A through a domain between amino acids 632 and 836. This interaction was confirmed by in vitro binding studies as well as by co-immunoprecipitation of epitope-tagged proteins expressed in cultured cells. Our results suggest that protein phosphatase 2A might interact with the Axin.APC.GSK-3.beta-catenin complex, where it could modulate the effect of GSK-3 on beta-catenin or other proteins in the complex. We also identified a region of Axin that may allow it to form dimers or multimers. Through two-hybrid and co-immunoprecipitation studies, we demonstrated that the C-terminal 100 amino acids of Axin could bind to the same region as other Axin molecules.  相似文献   

19.
Thermal stability of the pore-forming domain of colicin A was studied by high sensitivity differential scanning calorimetry and circular dichroism spectroscopy. In the pH range between 8 and 5, the thermal denaturation of the protein in solution occurs at 66-69 degrees C and is characterized by the calorimetric enthalpy of approximately 90 kcal/M. At pH below 5, there is a rapid pH-dependent destabilization of the pore-forming domain resulting in the lowering of the midpoint denaturation temperature and a decrease in the calorimetric enthalpy of denaturation. Circular dichroism spectra in the near and far ultraviolet show that the thermotropic transition is associated with collapse of the native tertiary structure of the pore-forming domain, although a large proportion of the helical secondary structure remains preserved. The present data indicate some similarity also between acid-induced and temperature-induced denaturation of the pore-forming domain of colicin A. Association of the pore-forming domain with phospholipid vesicles of dioleoylphosphatidylglycerol results in total disappearance of the calorimetric transition, even at pH values as high as 7. Since lipid binding also induces collapse of the near ultraviolet circular dichroism spectrum, these data indicate that interaction with the membrane facilitates a conformational change within the pore-forming domain to a looser (denaturated-like) state. These findings are discussed in relation to the recent model (van der Goot, F. G., Gonzalez-Manas, J. M., Lakey, J. H., Pattus, F. (1991) Nature 354, 408-410) which postulates that a flexible "molten globule" state is an intermediate on the pathway to membrane insertion of colicin A.  相似文献   

20.
Megalin is a large cell surface receptor that mediates the binding and internalization of a number of structurally and functionally distinct ligands from the lipoprotein and protease:protease inhibitor families. To begin to address how megalin is able to bind ligands with unique structurally properties, we have mapped a binding site for apolipoprotein E (apoE)-beta very low density lipoprotein (beta VLDL), lipoprotein lipase, aprotinin, lactoferrin, and the receptor-associated protein (RAP) within the primary sequence of the receptor. RAP is known to inhibit the binding of all ligands to megalin. We identified a ligand-binding site on megalin by raising mAb against purified megalin, selected for a mAb whose binding to megalin is inhibited by RAP, and mapped the epitope for this mAb. mAb AC10 inhibited the binding of apoE-beta VLDL, lipoprotein lipase, aprotinin, and lactoferrin to megalin in a concentration-dependent manner. When cDNA fragments encoding the four cysteine-rich ligand-binding repeats in megalin were expressed in a baculovirus system and immunoblotted with AC10, it recognized only the second cluster of ligand-binding repeats. The location of the epitope recognized by mAb AC10 within this domain was pinpointed to amino acids 1111-1210. From these studies we conclude that the binding of apoE-beta VLDL, lactoferrin, aprotinin, lipoprotein lipase, and RAP to megalin is either competitively or sterically inhibited by mAb AC10 suggesting that these ligands bind to the same or closely overlapping sites within the second cluster of ligand-binding repeats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号