首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper focuses on a finite‐time adaptive fuzzy control problem for nonstrict‐feedback nonlinear systems with actuator faults and prescribed performance. Compared with existing results, the finite‐time prescribed performance adaptive fuzzy output feedback control is under study for the first time. By designing performance function, the transient performance of the corresponding controlled variable is maintained in a prescribed area. Combining the finite‐time stability criterion with backstepping technique, a feasible adaptive fault‐tolerant control scheme is proposed to guarantee that the system output converges to a small neighborhood of the origin in finite time, and the closed‐loop signals are bounded. Finally, simulation results are shown to illustrate the effectiveness of the presented control method.  相似文献   

2.
A robust adaptive output‐feedback control scheme is proposed for a class of nonlinear systems with unknown time‐varying actuator faults. Additional unmodelled terms in the actuator fault model are considered. A new linearly parameterized model is proposed. The boundedness of all the closed‐loop signals is established. The desired control performance of the closed‐loop system is guaranteed by appropriately choosing the design parameters. The properties of the proposed control algorithm are demonstrated by two simulation examples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Compared with the fault diagnosis, detection, and isolation literature, very few results are available to discuss control algorithms directly for multi‐input multi‐output nonlinear systems with both sensor and actuator faults in the fault tolerant control literature. In this work, we present a fault tolerant control algorithm to address the system output stabilization problem for a class of multi‐input multi‐output nonlinear systems with both parametric and nonparametric uncertainties, subject to sensor and actuator faults that can be both multiplicative and additive. All elements of the sensor measurements and actuator components can be faulty. Besides, the control input gain function is not fully known. Backstepping method is used in the analysis and control design. We show that under the proposed control scheme, uniformly ultimate boundedness of the system output is guaranteed, while all closed‐loop system signals stay bounded. In the cases where the sensor faults are only multiplicative, exponential convergence of the system state variables into small neighbourhoods around zero is guaranteed. An illustrative example on a robot manipulator model is presented in the end to further demonstrate the effectiveness of the proposed control scheme.  相似文献   

4.
In this paper, we solve the problem of output tracking for linear uncertain systems in the presence of unknown actuator failures using discontinuous projection‐based output feedback adaptive robust control (ARC). The faulty actuators are characterized as unknown inputs stuck at unknown values experiencing bounded disturbance and actuators losing effectiveness at unknown instants of time. Many existing techniques to solve this problem use model reference adaptive control (MRAC), which may not be well suited for handling various disturbances and modeling errors inherent to any realistic system model. Robust control‐based fault‐tolerant schemes have guaranteed transient performance and are capable of dealing with modeling errors to certain degrees. But, the steady‐state tracking accuracy of robust controllers, e.g. sliding mode controller, is limited. In comparison, the backstepping‐based output feedback adaptive robust fault‐tolerant control (ARFTC) strategy presented here can effectively deal with such uncertainties and overcome the drawbacks of individual adaptive and robust controls. Comparative simulation studies are performed on a linearized Boeing 747 model, which shows the effectiveness of the proposed scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the problem of fault‐tolerant insensitive control is addressed for a class of linear time‐invariant continuous‐time systems against bounded time‐varying actuator faults and controller gain variations. Adaptive mechanisms are developed to adjust controller gains in order to compensate for the detrimental effects of partial loss of control effectiveness and bias‐actuator faults. Variations of controller gains arise from time‐varying and bounded perturbations that are supposed to always exist in adaptive mechanisms. Based on the disturbed outputs of adaptive mechanisms, three different adaptive control strategies are constructed to achieve bounded stability results of the closed‐loop adaptive fault‐tolerant control systems in the presence of actuator faults and controller gain variations. Furthermore, comparisons of convergence boundaries of states and limits of control inputs among adaptive strategies are developed in this paper. The efficiency of the proposed adaptive control strategies and their comparisons are demonstrated by a rocket fairing structural‐acoustic model.  相似文献   

6.
During the past 30 years, various fault‐tolerant control (FTC) methods have been developed to address actuator or component faults for various systems with or without tracking control objectives. However, very few FTC strategies establish a relation between the post‐fault reference trajectory to track and the remaining resources in the system after fault occurrence. This is an open problem that is not well considered in the literature. The main contribution of this paper is in the design of a reconfigurable FTC and trajectory planning scheme with emphasis on online decision making using differential flatness. In the fault‐free case and on the basis of the available actuator resources, the reference trajectories are synthesized so as to drive the system as fast as possible to its desired setpoint without violating system constraints. In the fault case, the proposed active FTC system (AFTCS) consists in synthesizing a reconfigurable feedback control along with a modified reference trajectories once an actuator fault has been diagnosed by a fault detection and diagnosis scheme, which uses a parameter‐estimation‐based unscented Kalman filter. Benefited with the integration of trajectory re‐planning using the flatness concept and the compensation‐based reconfigurable controller, both faults and saturation in actuators can be handled effectively with the proposed AFTCS design. Advantages and limitations of the proposed AFTCS are illustrated using an experimental quadrotor unmanned aerial vehicle testbed.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This paper proposes a robust active fault‐tolerant control (AFTC) approach for medium‐scale unmanned autonomous helicopter (UAH) with rotor flapping dynamics in the presence of unknown external disturbances and actuator faults. The robust items are adopted to improve the disturbance rejection capability of the UAH system. The adaptive fault observers are developed to estimate the fault parameters and the fault detection (FD) algorithms are presented to detect the actuator faults in different loops. In order to obtain satisfactory trajectory tracking performance, a backstepping‐based robust AFTC scheme is designed for the simplified 6‐degree‐of‐freedom (DOF) UAH nonlinear dynamics model and the global stability of the closed‐loop system is proved by using the Lyapunov method. Several groups of numerical simulation results are carried out to verify the effectiveness of the developed method.  相似文献   

8.
This paper investigates the problem of adaptive fault tolerant control for a class of dynamic systems with unknown un‐modeled actuator faults. The fault model is assumed to be an unknown nonlinear function of control input, not in the traditional form in which the faults can be described as gain and/or bias faults. Using the property of the basic function of neural networks and the implicit function theorem, a novel neural networks‐based fault tolerant controller is designed. Finally, the lateral dynamics of a front‐wheeled steered vehicle is used to demonstrate the efficiency of the proposed design techniques. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper investigates the robust adaptive fault‐tolerant control problem for state‐constrained continuous‐time linear systems with parameter uncertainties, external disturbances, and actuator faults including stuck, outage, and loss of effectiveness. It is assumed that the knowledge of the system matrices, as well as the upper bounds of the disturbances and faults, is unknown. By incorporating a barrier‐function like term into the Lyapunov function design, a novel model‐free fault‐tolerant control scheme is proposed in a parameter‐dependent form, and the state constraint requirements are guaranteed. The time‐varying parameters are adjusted online based on an adaptive method to prevent the states from violating the constraints and compensate automatically the uncertainties, disturbances, and actuator faults. The time‐invariant parameters solved by using data‐based policy iteration algorithm are introduced for helping to stabilize the system. Furthermore, it is shown that the states converge asymptotically to zero without transgression of the constraints and all signals in the resulting closed‐loop system are uniformly bounded. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, an adaptive sliding mode (ASM) scheme is proposed for fault identification and fault‐tolerant control of near space vehicles (NSVs). First, the attitude dynamic model is introduced, and a baseline controller based on reference sliding mode scheme is designed in the case of no faults. Then fault parameterizations with actuator dynamics is presented for several classes of faults: lock‐in‐place, float, hard‐over, and loss of effectiveness. On the basis of adaptive observer design, fault parameters can be accurately estimated on‐line. Furthermore, an ASM fault‐tolerant controller is designed for both cases of actuator dynamic faults and control effector damage. Finally, simulation experiments show that the proposed ASM scheme is able to quickly and accurately identify faults and reconfigure the controller, resulting in excellent overall system performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we develop a new decentralized retrofit adaptive fault‐tolerant control design for a class of nonlinear models arising in flight control. The proposed adaptive fault‐tolerant controller is designed to accommodate loss‐of‐effectiveness (LoE) failures in flight control actuators and achieve accurate estimation of failure‐related parameters. The design is based on local estimation of LoE parameters and generation of local retrofit control signals to accommodate the failures. Using state‐dependent closed‐loop estimation errors, we show the overall system to be stable and demonstrate the tracking error to converge to zero asymptotically for any combination of actuator failures. Through computer simulation of F/A‐18 aircraft under actuator LoE failures, the proposed approach is also shown to achieve better parameter estimation performance compared to the fully centralized design and the design employing local observers and a centralized adaptive controller. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This work is concerned with the problem of delay‐dependent adaptive fault‐tolerant controller design against unknown actuator faults for linear continuous systems with time‐varying delay. Based on the online estimation of possible faults by discontinuous adaptation law, identification parameters of the adaptive state feedback controller are updated autonomously to compensate the fault effects on the delayed system. For the first time, a convex combination idea and a projection‐type adaptive approach are combined organically to derive the main results. A set of new delay‐dependent reconfigurable stabilization criteria, which guarantee the stability of closed‐loop systems in both fault‐free and faulty cases, is established in terms of linear matrix inequalities. Two numerical instances for linear delayed systems and the linearized model for the lateral motion of Boeing 747 are respectively simulated to illustrate the superiority and the effectiveness of the presented adaptive delay‐dependent results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A theoretical framework for active fault‐tolerant attitude stabilization control is developed and applied to flexible spacecraft. The proposed scheme solves a difficult problem of fault‐tolerant controller design in the presence of severe partial loss of actuator effectiveness faults and external disturbances. This is accomplished by developing an observer‐based fault detection and diagnosis mechanism to reconstruct the actuator faults. Accordingly, a backstepping‐based fault‐tolerant control law is reconfigured using the reconstructed fault information. It is shown that the proposed design approach guarantees that all of the signals of the closed‐loop system are uniformly ultimately bounded. The closed‐loop performance of the proposed control strategy is evaluated extensively through numerical simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This work deals with the problem of a model reference tracking based on the design of an active fault tolerant control for linear parameter‐varying systems affected by actuator faults and unknown inputs. Linear parameter‐varying systems are described by a polytopic representation with measurable gain scheduling functions. The main contribution is to design an active fault tolerant controller whose control law is described by an adaptive proportional integral structure. This one requires 3 types of online information, which are reference outputs, measured real outputs, and the fault estimation provided by a model reference, sensors, and an adaptive polytopic observer, respectively. These types of information are used to reconfigure the designed controller, which is able to compensate the fault effects and to make the closed‐loop system able to track reference outputs in spite of the presence of actuator faults and disturbances. The controller and the observer gains are obtained by solving a set of linear matrices inequalities. Performances of the proposed method are compared to another previous method to underline the relevant results.  相似文献   

15.
This paper addresses the issue of fault estimation and accommodation for a discrete‐time switched system with actuator faults. Here, we assume that the sojourn probabilities are known a priori. By using the reduced‐order observer method, the sojourn probability approach, and the Lyapunov technique, a fault estimation algorithm is obtained for the considered system. The main objective of this work is to design a dynamic output feedback fault‐tolerant controller based on the obtained fault estimation information such that the closed‐loop discrete‐time switched system with available sojourn probabilities is robustly mean‐square stable and satisfies a prescribed mixed and passivity disturbance attenuation level in the presence of actuator faults. More precisely, a dynamic output feedback fault‐tolerant controller is established in terms of linear matrix inequalities. Finally, numerical examples are provided to illustrate the usefulness and effectiveness of the proposed design technique.  相似文献   

16.
In this study, an active fault‐tolerant control technique with reconfiguration against actuator/surface failures is presented. A two‐stage Kalman filter is designed in order to identify the control distribution matrix elements that correspond to the faulty actuator/surface; thus, the control reconfiguration is carried out using this identified control distribution matrix. The actuator/surface fault identification problem is solved through two jointly operating Kalman filters: the first one is for the estimation of the control distribution matrix elements that correspond to the faulty actuator/surface, and the second one is for the estimation of the state variables of the aircraft model. A structure for the active fault‐tolerant aircraft flight control system with reconfiguration against actuator/surface failures is presented. A control reconfiguration action is taken in order to keep the performance of the impaired aircraft the same as that of the unimpaired aircraft. In simulations, the nonlinear flight dynamics of an AFTI/F‐16 fighter model is considered, and the performance of the proposed actuator/surface failure identification and reconfigurable control schemes are examined for this model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
An active fault tolerant control (AFTC) method is proposed for discrete‐time piecewise affine (PWA) systems. Only actuator faults are considered. The AFTC framework contains a supervisory scheme, which selects a suitable controller in a set of controllers such that the stability and an acceptable performance of the faulty system are held. The design of the supervisory scheme is not considered here. The set of controllers is composed of a normal controller for the fault‐free case, an active fault detection and isolation controller for isolation and identification of the faults, and a set of passive fault tolerant controllers (PFTCs) modules designed to be robust against a set of actuator faults. In this research, the piecewise nonlinear model is approximated by a PWA system. The PFTCs are state feedback laws. Each one is robust against a fixed set of actuator faults and is able to track the reference signal while the control inputs are bounded. The PFTC problem is transformed into a feasibility problem of a set of LMIs. The method is applied on a large‐scale live‐stock ventilation model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, an actuator fault‐tolerant control (FTC) strategy based on set separation is presented. The proposed scheme employs a standard configuration consisting of a bank of observers which match the different fault situations that can occur in the plant. Each of these observers has an associated estimation error with a distinctive behaviour when a estimator matches the current fault situation of the plant. With this information from each observer, a fault diagnosis and isolation (FDI) module is able to reconfigure the control loop by selecting the appropriate stabilising controller from a bank of precomputed control laws, each of them related to one of the considered fault models. The control law consists of a reference feedforward term and a feedback gain multiplying the state estimate provided by the matching observer. A novel feature of the proposed scheme resides in the decision criteria of the FDI, which is based on the computation of sets towards which the output estimation errors related to each fault scenario and for each control configuration converge. Conditions for the design of the FDI module and for fault tolerant closed‐loop stability are given, and the effectiveness of the approach is illustrated by means of a numerical example. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In this article, the problem of asynchronous adaptive dynamic output feedback sliding mode control (SMC) for a class of Takagi-Sugeno (T-S) fuzzy Markovian jump systems (MJSs) with actuator faults is investigated. The asynchronous dynamic output feedback control strategy is employed, as the nonsynchronization phenomenon of jump modes exists between the plant and the controller. A novel asynchronous adaptive SMC approach is proposed to solve the synthesis problem for T-S fuzzy MJSs with actuator faults. Sufficient conditions for stochastic asymptotic stability of T-S fuzzy MJSs are given. Under the designed asynchronous adaptive SMC scheme, the effects of actuator faults and external disturbance can be completely compensated and the reachability of sliding surface is ensured. Finally, an example is provided to demonstrate the effectiveness of the proposed design techniques.  相似文献   

20.
In this paper, we present a new fault‐tolerant control system for a class of nonlinear systems with input constraints. Because of many important factors that stabilize a nonlinear model predictive controller, it can be used as a powerful controller in the event of fault occurrence. So, the reconfigurable controller is designed based on the quasi‐infinite model predictive control (QIMPC) approach as a fault‐tolerant approach. On the other hand, a fault detection and diagnosis (FDD) system is designed based on the multiple model method. The bank of extended Kalman filters (EKFs) is used to detect the predefined actuator fault and estimate the unknown parameters of a fault. When a fault is detected, the proposed FDD information is used to correct the model of the faulty system recursively and reconfigure the controller. Delay on FDD decision may lead to performance degradation or even instability for some systems. The timely proposed FDD approach will preserve stability. Moreover, a framework is presented to ensure stability when a fault occurs. The effectiveness of this method is demonstrated, in comparison with conventional nonlinear model predictive control, by two practical examples. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号