首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the problem of fault‐tolerant insensitive control is addressed for a class of linear time‐invariant continuous‐time systems against bounded time‐varying actuator faults and controller gain variations. Adaptive mechanisms are developed to adjust controller gains in order to compensate for the detrimental effects of partial loss of control effectiveness and bias‐actuator faults. Variations of controller gains arise from time‐varying and bounded perturbations that are supposed to always exist in adaptive mechanisms. Based on the disturbed outputs of adaptive mechanisms, three different adaptive control strategies are constructed to achieve bounded stability results of the closed‐loop adaptive fault‐tolerant control systems in the presence of actuator faults and controller gain variations. Furthermore, comparisons of convergence boundaries of states and limits of control inputs among adaptive strategies are developed in this paper. The efficiency of the proposed adaptive control strategies and their comparisons are demonstrated by a rocket fairing structural‐acoustic model.  相似文献   

2.
This paper presents an effective scheme for detecting incipient faults in post‐fault systems (PFSs) subject to adaptive fault‐tolerant control (AFTC). Through a survey of existing techniques, it is shown that the adaptivity of the AFTC counteracts the effect of an incipient fault in the PFS. This makes some of the conventional fault‐detection strategies, such as Beard–Jones detection filters and adaptive observers, ineffective in this situation. It is shown that the unknown input observer (UIO) is an effective tool; hence, the UIO is designed to decouple the incipient fault from the AFTC such that the fault‐detection residual is sensitive only to the incipient fault. Extensive simulation study is presented using an aircraft example to test three fault‐detection approaches; it is demonstrated that the UIO is the most effective tool in detecting the incipient fault in a PFS subject to AFTC. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we solve the problem of output tracking for linear uncertain systems in the presence of unknown actuator failures using discontinuous projection‐based output feedback adaptive robust control (ARC). The faulty actuators are characterized as unknown inputs stuck at unknown values experiencing bounded disturbance and actuators losing effectiveness at unknown instants of time. Many existing techniques to solve this problem use model reference adaptive control (MRAC), which may not be well suited for handling various disturbances and modeling errors inherent to any realistic system model. Robust control‐based fault‐tolerant schemes have guaranteed transient performance and are capable of dealing with modeling errors to certain degrees. But, the steady‐state tracking accuracy of robust controllers, e.g. sliding mode controller, is limited. In comparison, the backstepping‐based output feedback adaptive robust fault‐tolerant control (ARFTC) strategy presented here can effectively deal with such uncertainties and overcome the drawbacks of individual adaptive and robust controls. Comparative simulation studies are performed on a linearized Boeing 747 model, which shows the effectiveness of the proposed scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents 2‐novel linear matrix inequality (LMI)‐based adaptive output feedback fault‐tolerant control strategies for the class of nonlinear Lipschitz systems in the presence of bounded matched or mismatched disturbances and simultaneous occurrence of actuator faults, including failure, loss of effectiveness, and stuck. The constructive algorithms based on LMI with creatively using Lyapunov stability theory and without the need for an explicit information about mode of actuator faults or fault detection and isolation mechanism are developed for online tuning of adaptive and fixed output‐feedback gains to stabilize the closed‐loop control system asymptotically. The proposed controllers guarantee to compensate actuator faults effects and to attenuate disturbance effects. The resulting control methods have simpler structure, as compared with most existing recent methods and more suitable for practical systems. The merits of the proposed fault‐tolerant control scheme have been verified by the simulation on nonlinear Boeing 747 lateral motion dynamic model subjected to actuator faults.  相似文献   

5.
In this paper, an actuator fault‐tolerant control (FTC) strategy based on set separation is presented. The proposed scheme employs a standard configuration consisting of a bank of observers which match the different fault situations that can occur in the plant. Each of these observers has an associated estimation error with a distinctive behaviour when a estimator matches the current fault situation of the plant. With this information from each observer, a fault diagnosis and isolation (FDI) module is able to reconfigure the control loop by selecting the appropriate stabilising controller from a bank of precomputed control laws, each of them related to one of the considered fault models. The control law consists of a reference feedforward term and a feedback gain multiplying the state estimate provided by the matching observer. A novel feature of the proposed scheme resides in the decision criteria of the FDI, which is based on the computation of sets towards which the output estimation errors related to each fault scenario and for each control configuration converge. Conditions for the design of the FDI module and for fault tolerant closed‐loop stability are given, and the effectiveness of the approach is illustrated by means of a numerical example. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Compared with the fault diagnosis, detection, and isolation literature, very few results are available to discuss control algorithms directly for multi‐input multi‐output nonlinear systems with both sensor and actuator faults in the fault tolerant control literature. In this work, we present a fault tolerant control algorithm to address the system output stabilization problem for a class of multi‐input multi‐output nonlinear systems with both parametric and nonparametric uncertainties, subject to sensor and actuator faults that can be both multiplicative and additive. All elements of the sensor measurements and actuator components can be faulty. Besides, the control input gain function is not fully known. Backstepping method is used in the analysis and control design. We show that under the proposed control scheme, uniformly ultimate boundedness of the system output is guaranteed, while all closed‐loop system signals stay bounded. In the cases where the sensor faults are only multiplicative, exponential convergence of the system state variables into small neighbourhoods around zero is guaranteed. An illustrative example on a robot manipulator model is presented in the end to further demonstrate the effectiveness of the proposed control scheme.  相似文献   

7.
This paper investigates the problem of adaptive fault tolerant control for a class of dynamic systems with unknown un‐modeled actuator faults. The fault model is assumed to be an unknown nonlinear function of control input, not in the traditional form in which the faults can be described as gain and/or bias faults. Using the property of the basic function of neural networks and the implicit function theorem, a novel neural networks‐based fault tolerant controller is designed. Finally, the lateral dynamics of a front‐wheeled steered vehicle is used to demonstrate the efficiency of the proposed design techniques. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A theoretical framework for active fault‐tolerant attitude stabilization control is developed and applied to flexible spacecraft. The proposed scheme solves a difficult problem of fault‐tolerant controller design in the presence of severe partial loss of actuator effectiveness faults and external disturbances. This is accomplished by developing an observer‐based fault detection and diagnosis mechanism to reconstruct the actuator faults. Accordingly, a backstepping‐based fault‐tolerant control law is reconfigured using the reconstructed fault information. It is shown that the proposed design approach guarantees that all of the signals of the closed‐loop system are uniformly ultimately bounded. The closed‐loop performance of the proposed control strategy is evaluated extensively through numerical simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The problem of active fault‐tolerant control with reconfiguration mechanism for uncertain linear systems with external disturbances is addressed applying the supervisory control approach. A key feature of the proposed approach is establishment of a set of conditions providing mutual performance in the sense of taking into account the interaction of the fault detection, isolation, and accommodation subsystems in order to achieve global fault‐tolerance performance with guaranteed global stability. The efficiency of the approach is demonstrated in an example of computer simulation for a flight system benchmark. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A direct adaptive non‐linear control framework for multivariable non‐linear uncertain systems with exogenous bounded disturbances is developed. The adaptive non‐linear controller addresses adaptive stabilization, disturbance rejection and adaptive tracking. The proposed framework is Lyapunov‐based and guarantees partial asymptotic stability of the closed‐loop system; that is, asymptotic stability with respect to part of the closed‐loop system states associated with the plant. In the case of bounded energy L2 disturbances the proposed approach guarantees a non‐expansivity constraint on the closed‐loop input–output map. Finally, several illustrative numerical examples are provided to demonstrate the efficacy of the proposed approach. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
A robust adaptive output‐feedback control scheme is proposed for a class of nonlinear systems with unknown time‐varying actuator faults. Additional unmodelled terms in the actuator fault model are considered. A new linearly parameterized model is proposed. The boundedness of all the closed‐loop signals is established. The desired control performance of the closed‐loop system is guaranteed by appropriately choosing the design parameters. The properties of the proposed control algorithm are demonstrated by two simulation examples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
This paper focuses on the problem of active fault‐tolerant control for switched systems with time delay. By utilizing the fault diagnosis observer, an adaptive fault estimate algorithm is proposed, which can estimate the fault signal fast and exactly. Meanwhile, a delay‐dependent criterion is obtained with the purpose of reducing the conservatism of the adaptive observer design. Based on the fault estimation information, an observer‐based fault‐tolerant controller is designed to guarantee the stability of the closed‐loop system. In terms of linear matrix inequality, sufficient conditions are derived for the existence of the adaptive observer and fault‐tolerant controller. Finally, a numerical example is included to illustrate the efficiency of the proposed approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper proposes a robust active fault‐tolerant control (AFTC) approach for medium‐scale unmanned autonomous helicopter (UAH) with rotor flapping dynamics in the presence of unknown external disturbances and actuator faults. The robust items are adopted to improve the disturbance rejection capability of the UAH system. The adaptive fault observers are developed to estimate the fault parameters and the fault detection (FD) algorithms are presented to detect the actuator faults in different loops. In order to obtain satisfactory trajectory tracking performance, a backstepping‐based robust AFTC scheme is designed for the simplified 6‐degree‐of‐freedom (DOF) UAH nonlinear dynamics model and the global stability of the closed‐loop system is proved by using the Lyapunov method. Several groups of numerical simulation results are carried out to verify the effectiveness of the developed method.  相似文献   

14.
In this paper, a new fault diagnosis and fault‐tolerant control method based on the model equivalent transformation is proposed for the stochastic distribution time‐delayed control system, in which the random delay between the controller and the actuator and the external disturbance is considered. The system is modeled by using a linear B‐spline to approximate the probability density function (PDF) of system output. The original system is transformed into an equivalent system without random delay based on the Laplace transformation method. Then, the equivalent system that is converted to the augmentation system with a new state variable is introduced. The observer is designed to estimate the fault information based on the augmentation system. Observer gain matrices and controller parameters are obtained by solving the linear matrix inequality. The PI control algorithm is used to make the PDF of the system output track the desired distribution. Finally, the validity of the proposed method is verified by computer simulation results.  相似文献   

15.
This paper studies the problem of observer-based finite time adaptive fault tolerant control for nonaffine nonlinear systems with actuator faults and disturbances. Based on mean value theorem and convex combination method, a adaptive neural observer with virtual control coefficients is designed to estimate the systems states. Then, by using funnel Lyapunov function and backstepping method, a finite time control scheme is designed in the presence of disturbances and actuator faults. The stability analysis proves that tracking errors can converge to the prescribed performance bound in a finite time and all signals are uniformly ultimately bounded. Finally, simulation results verify efficiency of the studied approach.  相似文献   

16.
During the past 30 years, various fault‐tolerant control (FTC) methods have been developed to address actuator or component faults for various systems with or without tracking control objectives. However, very few FTC strategies establish a relation between the post‐fault reference trajectory to track and the remaining resources in the system after fault occurrence. This is an open problem that is not well considered in the literature. The main contribution of this paper is in the design of a reconfigurable FTC and trajectory planning scheme with emphasis on online decision making using differential flatness. In the fault‐free case and on the basis of the available actuator resources, the reference trajectories are synthesized so as to drive the system as fast as possible to its desired setpoint without violating system constraints. In the fault case, the proposed active FTC system (AFTCS) consists in synthesizing a reconfigurable feedback control along with a modified reference trajectories once an actuator fault has been diagnosed by a fault detection and diagnosis scheme, which uses a parameter‐estimation‐based unscented Kalman filter. Benefited with the integration of trajectory re‐planning using the flatness concept and the compensation‐based reconfigurable controller, both faults and saturation in actuators can be handled effectively with the proposed AFTCS design. Advantages and limitations of the proposed AFTCS are illustrated using an experimental quadrotor unmanned aerial vehicle testbed.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This paper focuses on a finite‐time adaptive fuzzy control problem for nonstrict‐feedback nonlinear systems with actuator faults and prescribed performance. Compared with existing results, the finite‐time prescribed performance adaptive fuzzy output feedback control is under study for the first time. By designing performance function, the transient performance of the corresponding controlled variable is maintained in a prescribed area. Combining the finite‐time stability criterion with backstepping technique, a feasible adaptive fault‐tolerant control scheme is proposed to guarantee that the system output converges to a small neighborhood of the origin in finite time, and the closed‐loop signals are bounded. Finally, simulation results are shown to illustrate the effectiveness of the presented control method.  相似文献   

18.
In this paper, an adaptive sliding mode (ASM) scheme is proposed for fault identification and fault‐tolerant control of near space vehicles (NSVs). First, the attitude dynamic model is introduced, and a baseline controller based on reference sliding mode scheme is designed in the case of no faults. Then fault parameterizations with actuator dynamics is presented for several classes of faults: lock‐in‐place, float, hard‐over, and loss of effectiveness. On the basis of adaptive observer design, fault parameters can be accurately estimated on‐line. Furthermore, an ASM fault‐tolerant controller is designed for both cases of actuator dynamic faults and control effector damage. Finally, simulation experiments show that the proposed ASM scheme is able to quickly and accurately identify faults and reconfigure the controller, resulting in excellent overall system performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This work is concerned with the problem of delay‐dependent adaptive fault‐tolerant controller design against unknown actuator faults for linear continuous systems with time‐varying delay. Based on the online estimation of possible faults by discontinuous adaptation law, identification parameters of the adaptive state feedback controller are updated autonomously to compensate the fault effects on the delayed system. For the first time, a convex combination idea and a projection‐type adaptive approach are combined organically to derive the main results. A set of new delay‐dependent reconfigurable stabilization criteria, which guarantee the stability of closed‐loop systems in both fault‐free and faulty cases, is established in terms of linear matrix inequalities. Two numerical instances for linear delayed systems and the linearized model for the lateral motion of Boeing 747 are respectively simulated to illustrate the superiority and the effectiveness of the presented adaptive delay‐dependent results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
This article addresses an adaptive fuzzy practical fixed-time tracking control for nonlinear systems with unknown actuator constraints and uncertainty functions. First, fuzzy logic systems (FLSs) are used to identify uncertain functions. Then, by utilizing FLSs, backstepping technique, and finite-time stability theory, an adaptive fuzzy practical fixed-time control is proposed to obtain satisfactory tracking performance even when the actuator faults. The theoretical analysis verified that the closed-loop systems is practical fixed-time stable under the proposed control strategy, the tracking error converges to a small neighborhood of the origin in a fixed time, and the convergence time is independent of the state conditions. Finally, both numerical simulation and physical example demonstrates the effectiveness of the proposed control strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号