首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the evaluation of inter-laminar stresses in the adhesive layer existing between the lap and the strap adherends of lap shear joints (LSJ) made with curved laminated fibre reinforced plastic (FRP) composite panels for varied embedded delaminations between the first and second plies of the strap adherend. Non-linear finite element analyses have been carried out using contact and multi point constraint (MPC) elements. The use of contact elements ensures avoidance of inter-penetration of delaminated surfaces. Sequential release of MPC elements facilitates computation of individual modes of Strain Energy Release Rates (SERR). The effects of varied delamination lengths on variations of peel and inter-laminar shear stresses and different modes of SERR are seen to be very significant. Their variations on both the delamination fronts, for each size of the delamination, are found to be much different from each other indicating different propagation rates at the two delamination fronts. The structural integrity of the LSJ in the presence of delaminations, thus, can be predicted with adaptive finite element (FE) simulations. It is further seen that the peak stress magnitudes and SERRs are higher in the LSJs made with curved FRP composite panels as compared to the flat laminates. This may be due to the stiffening effects induced by the curvature geometry of the curved composite panels.  相似文献   

2.
Three dimensional non-linear finite element analyses of Lap Shear Joints (LSJs) made with curved laminated FRP composite panels having pre-existing delaminations between the first and second plies of the strap adherend have been carried out using contact and Multi-Point Constraint elements (MPC). Progressive growth of delamination has been simulated by sequential release of the MPC elements. Strain Energy Release Rate (SERR), being an indicative parameter has been computed using Virtual Crack Closure Technique (VCCT) for assessing the growth and propagation of the delamination damage fronts. The inter-laminar stresses and the SERRs at the two fronts of the pre-embedded delamination are found to be significantly influenced by the delamination size. The three individual modes of SERR on the two delamination fronts are found to be much different from each other, indicating dissimilar rates of propagation. The curvature geometry of adherends significantly influences the SERR values. It is seen that decrease of radius of curvature of adherend panels, keeping their widths unchanged, increases the SERR values. Flatter FRP composite adherends have superior resistance to delamination damage propagation as compared to LSJs made with curved composite laminated panels.  相似文献   

3.
Three-dimensional non-linear finite element analyses have been carried out to study the effects of through-the-width delaminations on delamination damage propagation characteristics in adhesively bonded single-lap laminated FRP composite joints. The delaminations have been presumed either to pre-exist or to get evolved due to coupled stress failure criteria in the laminated FRP composite adherends near the overlap ends beneath the ply adjacent to the overlap region. The out-of-plane stresses in the adhesive layer, the interlaminar stress distributions along the delamination fronts and the strain energy release rates (SERRs) corresponding to the three individual modes have been evaluated for varying positions of the delaminations pre-embedded in either of the adherends. A good matching between the present 3D results and experimental and analytical solution of the literature has been established for the undamaged and a damaged model. A significant difference in the interlaminar stresses and the SERR values has been observed and is largely dependent on the adherends (bottom or top) possessing the through-the-width delamination damages. Also, the interlaminar stresses and SERR values along the two corresponding delamination fronts are different. Accordingly, it can be concluded that the positions of the through-the-width delaminations significantly influence the delamination damage propagation behaviour vis-a-vis the performance of the composite joint.  相似文献   

4.
This paper deals with the study of interaction of manufacturing thermal residual stresses and mechanical loading in penny-shaped delaminations embedded between dissimilar, anisotropic fiber composite layers by conducting two sets of three-dimensional thermoelastic finite element analyses with and without residual stress effects. Modified crack closure integral (MCCI) techniques based on the concepts of linear elastic fracture mechanics (LEFM) have been used to calculate the distribution of individual modes of strain energy release rates (SERR) to investigate the interlaminar delamination initiation and propagation characteristics. Asymmetric variations of strain energy release rates obtained along the delamination front are caused by the overlapping stress fields due to the coupling effect of thermal and mechanical loadings. It is found that parameters such as ply sequence and orientation, thermoelastic anisotropy and material heterogeneity, and ply properties of the delaminated interface dictate the interlaminar fracture behavior of multi-ply laminated FRP composites.  相似文献   

5.
This paper deals with three-dimensional non-linear finite element analyses to study the behaviour of embedded adhesion failure propagation in adhesively-bonded single-lap laminated FRP composite joints clamped at one end and subjected to uniform extension at the other end. Because of loading eccentricity and joint material heterogeneity, the embedded adhesion failure is likely to initiate from the stress singularity points and will propagate from either end of the adhesive layer along the adherend–adhesive interfaces. The effects of interaction of such failures and their propagations along the interfaces of the adherends and adhesive are the main concerns of this paper. The peel and shear stresses have been computed along the mid-surface of the adhesive layer for varying adhesion failure lengths to find out the influence of adhesion failure length on the strength of the joint being analyzed. The concept of fracture mechanics has been used to calculate the strain energy release rate (SERR) as the adhesion failure propagates using the virtual crack closure technique (VCCT). It is seen that mode-II SERR is predominant in the propagation of such adhesion failures. The SERR values computed with respect to the adhesion failure lengths being propagated from the two ends of the adhesive layer are seen to be different.  相似文献   

6.
Strain energy release rate (SERR) based damage analyses of functionally graded adhesively bonded tubular lap joints of laminated fiber reinforced plastic (FRP) composites under varied loadings have been studied using three-dimensional geometrically non-linear finite element (FE) analyses. FE simulations have been carried out when a tubular joint is subjected to axial and pressure loadings. SERR is utilized as the characterizing and governing parameter for assessing damages emanating from the critical location. Individual and total SERR over the damage front have been computed using modified crack closure integral (MCCI) based on the concept of linear elastic fracture mechanics. Results reveal that damage initiation locations in tubular joints subjected to axial and pressure loadings are entirely different. Furthermore, modes responsible for propagation of such damages in tubular joints under axial and pressure loadings are also different. Based on the FE simulations, tubular joints under pressure loading are found to be more vulnerable for damage initiation and its propagation. Furthermore, the damage propagation behavior of tubular joints with pre-embedded damages at the critical location has been compared between conventional mono-modulus adhesives and functionally graded adhesives with appropriate material gradation profile. Results indicate that material gradient profile of the adhesive layer offers excellent reduction in SERR for shorter interfacial failure lengths in tubular joints under axial loading which is desired to delay the damage growth. Improved crack growth resistance in the joint enhances the structural integrity and service life of the tubular joint structure. However, considerable reduction in SERR has not been noticed in the said joint when subjected to pressure loading. Hence, the use of functionally graded adhesive along the bond layer is recommended for the designer/technologist while designing tubular joint under general loading condition.  相似文献   

7.
In this paper, growths of different types of failures including adhesion, cohesion and delamination for a single lap joint (SLJ) of composite laminates were investigated using three-dimensional geometrically nonlinear finite element analysis and by adopting a suitable modeling technique. A unique damage modeling method called sub-laminate modeling was employed for the modeling of damages of different failure modes so as to avoid the oscillatory stress and displacement fields around the damage front. The strain energy release rate (SERR) parameter was used for studying the damage growth and the individual and total components of the SERR along the various damage fronts are evaluated using the virtual crack closure technique (VCCT) based on the linear elastic fracture mechanics (LEFM) approach. This study reveals: that the opening mode is the dominant mode of the propagation for the adhesion and delamination damages, while the sliding mode is dominant for the cohesion failure; that the cohesion failure grows at a faster rate than the adhesion failure; and that the delamination front entrapped within the overlap region in the top adherend of the SLJ grows faster when the delamination damages are present simultaneously in both the adherends. This is particularly true when the delamination centers are exactly aligned with the overlap ends of the joint.  相似文献   

8.
This paper deals with three-dimensional non-linear finite element analyses to assess the structural behavior of adhesively-bonded double supported tee joint of laminated FRP composites having embedded interfacial failures. The onset of interfacial failures is predicted by using Tsai–Wu coupled stress failure criterion with pre-determined stress values. The concept of fracture mechanics principle is utilized to study the sustainability of the tee joint having interfacial failures pre-existed at the critical locations. Individual modes of the strain energy release rates (SERR) GI, GII and GIII, are considered as the damage growth parameters and, are evaluated using the Modified crack closure integral (MCCI) technique based on the concept of linear elastic fracture mechanics (LEFM). Based on the stress analyses, it has been observed that the interfacial failures in tee joint structure trigger at the interface of base plate and adhesive layer from both ends of base plate. Depending on the SERR magnitudes, it has been noticed that the interfacial failure propagates under mixed mode condition. Therefore total SERR (GT) is considered as the governing parameter for damage propagation. Furthermore, efforts have been made to retard damage propagation rate by employing functionally graded adhesive (FGA) instead of monolithic adhesive material. Series of numerical simulations have been performed for varied interfacial failure length in functionally graded adhesively bonded double supported tee joint structure in order to achieve the significant effect of FGA with various modulus ratios on SERR. Material gradation of adhesive indicates significant SERR reduction at the incipient stage of failure which necessitates the use of functionally graded adhesive for the tee joint and prolong the service life of the structure.  相似文献   

9.
This paper deals with Finite Element Analysis of bonded Tubular Socket Joints (TSJs) made with laminated Fibre Reinforced Plastic (FRP) composite structures. The effective coupling length for suitable performance of the joint is determined based on the Tsai–Wu failure criterion. The analysis revealed the three-dimensional nature of the stresses and are found to be concentrated in the close vicinity of the free edges and junction of the adherends in the coupling region of the bonded TSJ. Shear stress ( τr ), though comparatively small in magnitude, is found to be extremely sensitive to three-dimensional effects as compared to stresses τzr and σr . Failure indices at different critical interfaces are determined using Quadratic Failure Criterion (QFC) within the adhesive and Tsai–Wu coupled stress criterion for the adherend–adhesive and socket–adhesive interfaces. Based on the latter criterion, locations prone to adhesion failure initiation are identified to be existing near the free edges of the adherend–adhesive interfaces in the coupling region of the bonded TSJ. Strain Energy Release Rate (SERR) calculated using Modified Crack Closure Integral (MCCI) vis-à-vis Virtual Crack Closure Technique (VCCT) has been used as the characterizing parameter for assessing the growth of adhesion failures. The adhesion failure damages have been observed to propagate at the same rate in a self-similar manner mainly in the in-plane shearing mode. Quasi-isotropic and angle-ply orientations of the FRP composite laminates are more resistant to opening mode growth of failure, whereas cross-ply and unidirectional oriented socket/adherends offer better resistance to in-plane shearing mode of adhesion failure damage growth. Plies oriented in the direction of the applied load, especially Graphite/Epoxy (Gr/E) [90]16, are found to offer the best resistance to all types of adhesion failure growth modes and hence are the most preferred fibre orientations for the bonded TSJ under tension. Increasing the degree of anisotropy of the composite socket/adherends improves the adhesion failure damage growth resistance of the bonded TSJ. Boron/Epoxy (B/E) FRP composites are found to be the best in slowing down the growth rate of the adhesion failures among the various FRP composite socket/adherends considered in the present study.  相似文献   

10.
In this article, modification of carbon fiber surface by carbon based nanofillers (multi-walled carbon nanotubes [CNT], carbon nanofibers, and multi-layered graphene) has been achieved by electrophoretic deposition technique to improve its interfacial bonding with epoxy matrix, with a target to improve the mechanical performance of carbon fiber reinforced polymer composites. Flexural and short beam shear properties of the composites were studied at extreme temperature conditions; in-situ cryo, room and elevated temperature (−196, 30, and 120°C respectively). Laminate reinforced with CNT grafted carbon fibers exhibited highest delamination resistance with maximum improvement in flexural strength as well as in inter-laminar shear strength (ILSS) among all the carbon fiber reinforced epoxy (CE) composites at all in-situ temperatures. CNT modified CE composite showed increment of 9% in flexural strength and 17.43% in ILSS when compared to that of unmodified CE composite at room temperature (30°C). Thermomechanical properties were investigated using dynamic mechanical analysis. Fractography was also carried out to study different modes of failure of the composites.  相似文献   

11.
An experimental investigation was conducted to identify the failure mechanism and to understand damage propagation in compression-loaded composite structures. The tests were conducted on several laminates of different ply orientation with thicknesses that ranged from 0.56 to 0.79 cm. The panels were damaged by 1.27-cm-diameter aluminum spheres propelled normal to the specimen surface at velocities ranging from 30 m/s to 140 m/s. Results indicate that there is significant internal laminate damage due to low-velocity impact with no surface damage. The internal damage consists of delamination and intraply cracking. Three damage propagation modes were identified as causing specimen failure; delamination, axial load-lateral deformation coupling, and local shear failure.  相似文献   

12.
Abstract

A three-dimensional progressive failure analysis methodology was developed to predict the strength of double lap bolted joints in [0°/90°/±45°]2s carbon fibre reinforced plastic laminates. An experimental programme was conducted to verify and validate the proposed computational model. Good agreement was obtained between the experimental data and predictive model. A parametric study was conducted for varied clamping torque and friction coefficient values. The well known effect of those variables on the joint strength was captured. Although the in-plane mode of failure of each individual layer around the fastener hole was predicted, X-ray radiographs have shown that delamination failure is particularly dominant around the washer’s outer edge. At present, the proposed model does not account for delamination onset and propagation. Future work will involve implementing cohesive zone elements in regions of interest to capture this interlaminar cracking, a work in which the authors are currently engaged in.  相似文献   

13.
ABSTRACT

This review critically examines the recent developments in the use of carbon-based nanofillers as additional reinforcement to enhance the interlaminar properties of FRP composites. The low interlaminar strength of FRP composites results in delamination failure. The various nanoreinforcement strategies and their effect on fracture toughness, interlaminar shear strength (ILSS) and interlaminar fatigue are discussed in detail to prevent this delamination failure. Important findings on various factors that influence the interlaminar properties of multi-scale composites are presented by discussing various intrinsic and extrinsic toughening processes. Moreover, an overview of simulation techniques is provided to predict the delamination onset and propagation.  相似文献   

14.
Oxide/oxide composites reinforced by two-dimensional fiber fabrics are important structural materials at high temperatures but exhibit low delamination resistance. This study developed a simple slurry infiltration and sintering (SIS) process to fabricate three-dimensional oxide/oxide composites. The results showed that a homogeneous microstructure in three directions was obtained. This composite possessed a weak matrix, which had a porous structure and low elastic modulus. Typical mechanical properties of the composite were not lower than those of two-dimensional oxide/oxide composites since the flexural strength and fracture toughness were 332.4 MPa and 11.6 MPa·m1/2, respectively. Particularly, the composite had a good interlaminar shear strength of 25.4 MPa and a superior transthickness tensile strength of 5.6 MPa. X-ray computed tomography showed that fiber yarns in the through-thickness direction effectively impeded crack propagation and enhanced delamination resistance. Therefore, the reported SIS process is a very promising method for manufacturing three-dimensional oxide/oxide composites.  相似文献   

15.
In this study, both experimental tests and numerical simulation are implemented to investigate the tensile performance of adhesively bonded CFRP single-lap joints (SLJs). The study considers 7 different overlap lengths, 5 adherend widths and 3 stacking sequences of the joints. Three-dimensional (3D) finite element (FE) models are established to simulate the tensile behavior of SLJs. The failure loads and failure modes of SLJs are investigated systematically by means of FE models and they are in good agreement with those of experiments, proving the accuracy of finite element method (FEM). It is found that increasing the adherend width can improve the load-carrying capacity of the joint better than increasing the overlap length does. Moreover, choosing 0° ply as the first ply is also beneficial for upgrading joint's strength. With respect to failure modes, cohesive failure in adhesive and delamination in adherend take dominant, while matrix cracking and fiber fracture only play a small part. With overlap length increasing or adherend width decreasing, cohesive failure takes up a smaller and smaller proportion of whole failure area, but the opposite is true for delamination. SLJs bonded with [0/45/-45/90]3S adherends are prone to cohesive failure, and [90/-45/45/0]3S adherends are easy to appear delamination. Both shear and peel stress along the bondline indicate symmetrical and non-uniform distributions with great stress gradient near the overlap ends. As the load increases, the high stress zone shifts from the end to the middle of the bondline, corresponding to the damage initiation and propagation in the adhesive layer.  相似文献   

16.
The peel strength and delamination failure mode of coextruded microlayer sheets consisting of alternating layers of polycarbonate (PC) and poly(styrene-co-acrylonitrile) (SAN) were studied with the T-peel test. Four delamination modes were observed: two modes where the crack propagated along the PC–SAN interface and two other modes where the crack propagated through crazes in the SAN. The SAN layer thickness determined whether crack propagation was interfacial or through crazes. Crazing and crack propagation through crazes were observed only if the SAN layer was thicker than 1.5 μm. As the thickness of the SAN layer increased, the amount of crazing in front of the crack tip and the amount of craze fracture gradually increased; the peel strength increased accordingly. If the SAN layers were thinner than 1.5 μm and the PC layers were relatively thick, the crack propagated along a single interface. The peel strength for this delamination mode was the lowest and equal to about 90 J/m2, independent of layer thicknesses. This delamination mode came closest to providing a ”real” measure of the adhesive toughness of PC to SAN. With both interfacial and craze delamination, the crack could move from layer to layer if the PC was thin enough. Tearing of the relatively thin PC layers increased the peel strength of the multiple-layer delamination modes. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68:793–805, 1998  相似文献   

17.
采用芳纶纤维复合材料与钛合金制备单搭接胶接连接实验件。利用万能实验机、DIC、应变采集系统等手段,对胶接接头的极限载荷、应变场、应变分布和破坏模式进行表征,分析了拉伸载荷下胶接接头的应变分布规律和复合材料层合板刚度折减规律,探究了异质材料单搭接胶接接头的破坏过程。结果表明,胶接接头破坏模式为搭接接头两端胶层界面破坏,中间部位复合材料层间破坏。接头破坏过程为渐进破坏,受载时复合材料端头产生较大的剪切应变,裂纹在此处萌生,并不断向钛合金端头扩展,扩展部位复合材料层合板刚度不断折减,直到搭接面积过小胶层突然发生界面破坏。  相似文献   

18.
2-D叠层炭/炭复合材料失效机理的研究   总被引:1,自引:1,他引:1  
根据二维(2-D)炭/炭(C/C)复合材料存在的几种基本的失效模式,即基体开裂,分层,纤维断裂与脱粘,分别对其在拉伸载荷,剪切载荷及单轴压缩载荷下的失效机制的国内外一些研究成果进行综合评述,并给出了目前主要采用的一些失效分析方法,对2-D叠层C/C复合材料力学性能的研究具有普遍意义。  相似文献   

19.
纳米改性碳/酚醛树脂基复合材料性能研究   总被引:1,自引:0,他引:1  
针对碳/酚醛树脂基复合材料层间剪切强度低的缺点,采用纳米填料进行改性。测试了2种纳米填料(纳米碳纤维、碳纳米管)改性后酚醛树脂的热解性能,研究了纳米填料对复合材料力学性能、烧蚀性能以及高温炭化后力学性能的影响,并观察分析了复合材料测试后的微观形貌。研究结果表明,纳米填料改性后,复合材料的力学性能、烧蚀性能均有所改善。其中,纳米碳纤维改性后复合材料的常温层间剪切强度达到24.9 MPa,氧乙炔线烧蚀率为22.75μm/s,质量烧蚀率为23.58 mg/s。纳米碳纤维表面粗糙,与树脂基体的界面强度高,因此其改性后的力学性能和烧蚀性能优于碳纳米管。  相似文献   

20.
The use of adhesive joints is becoming increasingly important in aerospace, automotive and other industries where the use of traditional fasteners is discouraged. When using composite adherends, the use of adhesively bonded joints is preferable rather than the traditional bolts and other types of fasteners, because they do not require holes, thereby removing the problems of stress concentrations around the holes. However, when using an adhesively bonded joint, there will be concentrations of the distributions of shear and peel stresses within the adhesive layer which should be controlled effectively. Therefore, the investigation of such stress variation has attracted many researchers. The aforementioned stress distributions become more complicated if the composite adherend contains a pre-existing delamination. Delamination is one of the most common failure modes in laminated composite materials; it can occur due to sudden impact by an external object, during the manufacturing process (e.g., during the filament winding process), or as a result of excessive stresses due to an applied load. It is clear that the existence of a delamination in any composite structure causes a reduction in its stiffness and in some critical situations, it may cause complete failure. This paper investigates the effect of delamination on the structural response of an adhesively bonded tubular joint with composite and aluminum adherends. The finite element method, using the commercial package ABAQUS, is used to conduct a parametric investigation. The effects of the delamination's spatial location, length, width, and the applied loading are studied. Results provide interesting insight (not necessarily intuitive) into the effect of an interlayer delamination on the stress distribution within the adhesive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号