首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers the problem of adaptive neural tracking control for a class of nonlinear stochastic pure‐feedback systems with unknown dead zone. Based on the radial basis function neural networks' online approximation capability, a novel adaptive neural controller is presented via backstepping technique. It is shown that the proposed controller guarantees that all the signals of the closed‐loop system are semi‐globally, uniformly bounded in probability, and the tracking error converges to an arbitrarily small neighborhood around the origin in the sense of mean quartic value. Simulation results further illustrate the effectiveness of the suggested control scheme. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This article considers the issue of fuzzy adaptive dynamic programming control of nonlinear switched systems with arbitrary switchings and unknown uncertain functions and actuator hysteresis nonlinearities. The whole control approach is made of switching feedforward controller and optimal switching feedback controller. To get over the hardness of arbitrary switching structure and the issue of “explosion of complexity”, the common Lyapunov function theory and dynamic surface control method are utilized in the recursive design technique. By using fuzzy logic systems to model unknown inner dynamics and unknown cost functions, a novel fuzzy adaptive optimal switching control strategy is developed. Meanwhile, uniformly ultimately boundedness of all weights in the controlled systems are proved by the proposed control method, and the tracking performance is guaranteed in an optimal manner. Subsequently, a numerical simulation study is used to test the effectiveness of the presented control strategy.  相似文献   

3.
This paper considers the problem of adaptive fuzzy output‐feedback tracking control for a class of switched stochastic nonlinear systems in pure‐feedback form. Unknown nonlinear functions and unmeasurable states are taken into account. Fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy observer is designed to estimate the immeasurable states. Based on these methods, an adaptive fuzzy output‐feedback control scheme is developed by combining the backstepping recursive design technique and the common Lyapunov function approach. It is shown that all the signals in the closed‐loop system are semiglobally uniformly ultimately bounded in mean square in the sense of probability, and the observer errors and tracking errors can be regulated to a small neighborhood of the origin by choosing appropriate parameters. Finally, a simulation result is provided to show the effectiveness of the proposed control method.  相似文献   

4.
This paper investigates an adaptive neural tracking control for a class of nonstrict‐feedback stochastic nonlinear time‐delay systems with input saturation and output constraint. First, the Gaussian error function is used to represent a continuous differentiable asymmetric saturation model. Second, the appropriate Lyapunov‐Krasovskii functional and the property of hyperbolic tangent functions are used to compensate the time‐delay effects, the neural network is used to approximate the unknown nonlinearities, and a barrier Lyapunov function is designed to ensure that the output parameters are restricted. At last, based on Lyapunov stability theory, a robust adaptive neural control method is proposed, and the designed controller decreases the number of learning parameters and thus reduces the computational burden. It is shown that the designed neural controller can ensure that all the signals in the closed‐loop system are 4‐Moment (or 2 Moment) semi‐globally uniformly ultimately bounded and the tracking error converges to a small neighborhood of the origin. Two examples are given to further verify the effectiveness of the proposed approach.  相似文献   

5.
This paper focuses on consensus quantized control design problem for uncertain nonlinear multiagent systems with unmeasured states. Every follower can be denoted through a system with unmeasurable states, hysteretic quantized input, and unknown nonlinearities. Fuzzy state observer and Fuzzy logic systems are employed to estimate unmeasured states and approximate unknown nonlinear functions, respectively. The hysteretic quantized input can be split into two bounded nonlinear functions to avoid chattering problem. By combining adaptive backstepping and first‐order filter signals, an observer‐based fuzzy adaptive quantized control scheme is designed for each follower. All signals exist in closed‐loop systems are semiglobally uniformly ultimately bounded, and all followers can accomplish a desired consensus results. Finally, a numerical example is employed to elaborate the effectiveness of proposed control strategy.  相似文献   

6.
This paper investigates adaptive neural network output feedback control for a class of uncertain multi‐input multi‐output (MIMO) nonlinear systems with an unknown sign of control gain matrix. Because the system states are not required to be available for measurement, an observer is designed to estimate the system states. In order to deal with the unknown sign of control gain matrix, the Nussbaum‐type function is utilized. By using neural network, we approximated the unknown nonlinear functions and perfectly avoided the controller singularity problem. The stability of the closed‐loop system is analyzed by using Lyapunov method. Theoretical results are illustrated through a simulation example. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a nonlinear gain feedback technique for observer‐based decentralized neural adaptive dynamic surface control of a class of large‐scale nonlinear systems with immeasurable states and uncertain interconnections among subsystems. Neural networks are used in the observer design to estimate the immeasurable states and thus facilitate the control design. Besides avoiding the complexity problem in traditional backstepping, the new nonlinear feedback gain method endows an automatic regulation ability into the pioneering dynamic surface control design and improvement in dynamic performance. Novel Lyapunov function is designed and rigorous stability analysis is given to show that all the closed‐loop signals are kept semiglobally uniformly ultimately bounded, and the output tracking errors can be guaranteed to converge to sufficient area around zero, with the bound values characterized by design parameters in an explicit manner. Simulation and comparative results are shown to verify effectiveness.  相似文献   

8.
This paper proposes a neural network (NN)‐based adaptive control of piezoelectric actuators with unknown hysteresis. Based on the classical Duhem model described by a differential equation, the explicit solution to the equation is explored and a new hysteresis model is constructed as a linear model in series with a piecewise continuous nonlinear function. An NN‐based dynamic pre‐inversion compensator is designed to cancel out the effect of the hysteresis. With the incorporation of the pre‐inversion compensator, an adaptive control scheme is proposed to have the position of the piezoelectric actuator track the desired trajectory. This paper has three distinct features. First, it applies the NN to online approximate complicated piecewise continuous unknown nonlinear functions in the explicit solution to Duhem model. Second, an observer is designed to estimate the output of hysteresis of piezoelectric actuator based on the system input and output. Third, the stability of the controlled piezoelectric actuator with the observer is guaranteed. Simulation results for a practical system validate the effectiveness of the proposed method in this paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we consider the problem of decentralized adaptive output‐feedback regulation for stochastic nonlinear interconnected systems with unknown virtual control coefficients, stochastic unmodeled dynamic interactions. The main contributions of the paper are as follows: (1) This paper presents the first result on decentralized output‐feedback control for stochastic nonlinear systems with unknown virtual control coefficients; (2) For stochastic interconnected systems with stochastic integral input‐to‐state stable unmodeled dynamics, and more general nonlinear uncertain interconnections which depend upon the outputs of subsystems and the stochastic unmodeled dynamics, a decentralized output‐feedback controller is designed to drive the outputs and states to the origin almost surely. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
This paper focuses on a finite‐time adaptive fuzzy control problem for nonstrict‐feedback nonlinear systems with actuator faults and prescribed performance. Compared with existing results, the finite‐time prescribed performance adaptive fuzzy output feedback control is under study for the first time. By designing performance function, the transient performance of the corresponding controlled variable is maintained in a prescribed area. Combining the finite‐time stability criterion with backstepping technique, a feasible adaptive fault‐tolerant control scheme is proposed to guarantee that the system output converges to a small neighborhood of the origin in finite time, and the closed‐loop signals are bounded. Finally, simulation results are shown to illustrate the effectiveness of the presented control method.  相似文献   

11.
In this paper, we extend the nonlinear PI control methodology within an adaptive control framework. An adaptive nonlinear PI controller is proposed for output tracking of strict‐feedback nonlinear systems with nonsmooth actuator nonlinearities and unknown control directions. The current approach relaxes the standard assumption of known bounds for the associated system nonlinearities made in earlier nonlinear PI schemes. New theoretical boundedness results have been proved that enable the successful combination of backstepping and linear parametric approximators with the nonlinear PI approach and ensure semiglobal approximate tracking of the output to some reference trajectory. Following recent extensions of the nonlinear PI method to strict‐feedback systems, the intermediate virtual control laws are derived through suitable integral equations. Simulation results are also presented in this paper that verify our theoretical analysis.  相似文献   

12.
In this paper, a novel direct adaptive neural control approach is presented for a class of single‐input and single‐output strict‐feedback nonlinear systems with nonlinear uncertainties, unmodeled dynamics, and dynamic disturbances. Radial basis function neural networks are used to approximate the unknown and desired control signals, and a direct adaptive neural controller is constructed by combining the backstepping technique and the property of hyperbolic tangent function. It is shown that the proposed control scheme can guarantee that all signals in the closed‐loop system are semi‐globally uniformly ultimately bounded in mean square. The main advantage of this paper is that a novel adaptive neural control scheme with only one adaptive law is developed for uncertain strict‐feedback nonlinear systems with unmodeled dynamics. Simulation results are provided to illustrate the effectiveness of the proposed scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, an adaptive fuzzy backstepping dynamic surface control approach is considered for a class of uncertain pure‐feedback nonlinear systems with immeasurable states. Fuzzy logic systems are first employed to approximate the unknown nonlinear functions, and then an adaptive fuzzy state observer is designed to estimate the immeasurable states. By the combination of the adaptive backstepping design with a dynamic surface control technique, an adaptive fuzzy output feedback backstepping control approach is developed. It is proven that all the signals of the resulting closed‐loop system are semi‐globally uniformly ultimately bounded, and the observer and tracking errors converge to a small neighborhood of the origin by choosing the design parameters appropriately. Simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
We propose an adaptive output‐feedback controller for a general class of nonlinear triangular (strict‐feedback‐like) systems. The design is based on our recent results on a new high‐gain control design approach utilizing a dual high‐gain observer and controller architecture with a dynamic scaling. The technique provides strong robustness properties and allows the system class to contain unknown functions dependent on all states and involving unknown parameters (with no magnitude bounds required). Unlike our earlier result on this problem where a time‐varying design of the high‐gain scaling parameter was utilized, the technique proposed here achieves an autonomous dynamic controller by introducing a novel design of the observer, the scaling parameter, and the adaptation parameter. This provides a time‐invariant dynamic output‐feedback globally asymptotically stabilizing solution for the benchmark open problem proposed in our earlier work with no magnitude bounds or sign information on the unknown parameter being necessary. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
This paper proposes a self-triggered (ST) adaptive prescribed-time tracking control method for a class of stochastic nonlinear systems. Different from the existing results, an improved ST mechanism is proposed by adding a judgment condition to reduce the negative effect of excessive design interval on system performance. Based on the one-to-one mapping and backstepping technique, an adaptive prescribed-time tracking control method is proposed, which can make the error converge to the predefined precision set within the predetermined time. Simultaneously, applying the Lyapunov stability method, the boundedness of all signals in the closed-loop system can be ensured. Finally, a detailed simulation example is provided to show the effectiveness of the proposed control strategy.  相似文献   

16.
In this paper, an adaptive multi‐dimensional Taylor network (MTN) control scheme based on the backstepping and dynamic surface control (DSC) is developed to solve the tracking control problem for the stochastic nonlinear system with immeasurable states. The MTNs are used to approximate the unknown nonlinearities, and then based on the multivariable analog of circle criterion, an observer is first introduced to estimate the immeasurable states. By combining the adaptive backstepping technique and the DSC technique, an adaptive MTN output‐feedback backstepping DSC approach is developed. It is shown that the proposed controller ensures that all signals of the closed‐loop system are remain bounded in probability, and the tracking error converges to an arbitrarily small neighborhood around the origin in the sense of probability. Finally, the effectiveness of the design approach is illustrated by simulation results.  相似文献   

17.
This paper investigates the problem of adaptive output‐feedback neural network (NN) control for a class of switched pure‐feedback uncertain nonlinear systems. A switched observer is first constructed to estimate the unmeasurable states. Next, with the help of an NN to approximate the unknown nonlinear terms, a switched small‐gain technique‐based adaptive output‐feedback NN control scheme is developed by exploiting the backstepping recursive design scheme, input‐to‐state stability analysis, the common Lyapunov function method, and the average dwell time (ADT) method. In the recursive design, the difficulty of constructing an overall Lyapunov function for the switched closed‐loop system is dealt with by decomposing the switched closed‐loop system into two interconnected switched systems and constructing two Lyapunov functions for two interconnected switched systems, respectively. The proposed controllers for individual subsystems guarantee that all signals in the closed‐loop system are semiglobally, uniformly, and ultimately bounded under a class of switching signals with ADT, and finally, two examples illustrate the effectiveness of theoretical results, which include a switched RLC circuit system.  相似文献   

18.
In this paper, an adaptive neural output‐feedback control approach is considered for a class of uncertain multi‐input and multi‐output (MIMO) stochastic nonlinear systems with unknown control directions. Neural networks (NNs) are applied to approximate unknown nonlinearities, and K‐filter observer is designed to estimate unavailable system's states. Due to utilization of Nussbaum gain function technique in the proposed approach, the singularity problem and requirement to prior knowledge about signs of high‐frequency gains are removed, simultaneously. Razumikhin functional method is employed to deal with unknown state time‐varying delays, so that the offered control approach is free of common assumptions on derivative of time‐varying delays. Also, an adaptive neural dynamic surface control is developed; hence, explosion of complexity in conventional backstepping method is eliminated, effectively. The boundedness of all the resulting closed‐loop signals is guaranteed in probability; meanwhile, convergence of the tracking errors to adjustable compact set in the sense of mean quartic value is also proved. Finally, simulation results are shown to verify and clarify efficiency of the offered approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
This work presents a new adaptive control algorithm for a class of discrete‐time systems in strict‐feedback form with input delay and disturbances. The immersion and invariance formulation is used to estimate the disturbances and to compensate the effect of the input delay, resulting in a recursive control law. The stability of the closed‐loop system is studied using Lyapunov functions, and guidelines for tuning the controller parameters are presented. An explicit expression of the control law in the case of multiple simultaneous disturbances is provided for the tracking problem of a pneumatic drive. The effectiveness of the control algorithm is demonstrated with numerical simulations considering disturbances and input‐delay representative of the application.  相似文献   

20.
This paper deals with state feedback adaptive control of parametric‐strict‐feedback (triangular) non‐linear systems with unknown virtual control coefficients. A priori knowledge of the signs of the virtual coefficients is not required, and control signals and adaptive laws are smooth. Asymptotic tracking of smooth reference signals is achieved while all the variables remain bounded. The proposed algorithms make use of backstepping and tuning functions, and enlarge the class of non‐linear systems with unknown parameters for which asymptotic output tracking can be achieved. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号