首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, an adaptive neural output‐feedback control approach is considered for a class of uncertain multi‐input and multi‐output (MIMO) stochastic nonlinear systems with unknown control directions. Neural networks (NNs) are applied to approximate unknown nonlinearities, and K‐filter observer is designed to estimate unavailable system's states. Due to utilization of Nussbaum gain function technique in the proposed approach, the singularity problem and requirement to prior knowledge about signs of high‐frequency gains are removed, simultaneously. Razumikhin functional method is employed to deal with unknown state time‐varying delays, so that the offered control approach is free of common assumptions on derivative of time‐varying delays. Also, an adaptive neural dynamic surface control is developed; hence, explosion of complexity in conventional backstepping method is eliminated, effectively. The boundedness of all the resulting closed‐loop signals is guaranteed in probability; meanwhile, convergence of the tracking errors to adjustable compact set in the sense of mean quartic value is also proved. Finally, simulation results are shown to verify and clarify efficiency of the offered approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, robust output‐feedback tracking control is considered for a class of linear time‐varying plants whose time‐varying parameters are unknown bounded with bounded derivatives and output is affected by unknown bounded additive disturbances. Using adaptive dynamic surface control technique, the proposed scheme possesses the following advantages: (1) the design procedure is simple and the control law is easy to be implemented, and (2) by introducing an initialization technique, together with adjusting some design parameters, the performance of system tracking error can be guaranteed regardless of the time variation. It is proved that with the proposed scheme, all the closed‐loop signals are semi‐globally uniformly ultimately bounded. Simulation results are presented to demonstrate the effectiveness of the proposed scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, an adaptive fuzzy backstepping dynamic surface control (DSC) approach is developed for a class of MIMO nonlinear systems with input delays and state time‐varying delays. The unknown continuous nonlinear functions are expressed as the linearly parameterized form by using the fuzzy logic systems, and then, by combining the backstepping technique, the appropriate Lyapunov–Krasovskii functionals, and the ‘minimal learning parameters’ algorithms with the DSC approach, the adaptive fuzzy tracking controller is designed. Our development is able to eliminate the problem of ‘explosion of complexity’ inherent in the existing backstepping‐based methods. It is proven that the proposed design method can guarantee that all the signals in the closed‐loop system are bounded and the tracking error is smaller than a prescribed error bound. Finally, simulation results are provided to show the effectiveness of the proposed approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates an adaptive neural tracking control for a class of nonstrict‐feedback stochastic nonlinear time‐delay systems with input saturation and output constraint. First, the Gaussian error function is used to represent a continuous differentiable asymmetric saturation model. Second, the appropriate Lyapunov‐Krasovskii functional and the property of hyperbolic tangent functions are used to compensate the time‐delay effects, the neural network is used to approximate the unknown nonlinearities, and a barrier Lyapunov function is designed to ensure that the output parameters are restricted. At last, based on Lyapunov stability theory, a robust adaptive neural control method is proposed, and the designed controller decreases the number of learning parameters and thus reduces the computational burden. It is shown that the designed neural controller can ensure that all the signals in the closed‐loop system are 4‐Moment (or 2 Moment) semi‐globally uniformly ultimately bounded and the tracking error converges to a small neighborhood of the origin. Two examples are given to further verify the effectiveness of the proposed approach.  相似文献   

5.
This work is concerned with the problem of delay‐dependent adaptive fault‐tolerant controller design against unknown actuator faults for linear continuous systems with time‐varying delay. Based on the online estimation of possible faults by discontinuous adaptation law, identification parameters of the adaptive state feedback controller are updated autonomously to compensate the fault effects on the delayed system. For the first time, a convex combination idea and a projection‐type adaptive approach are combined organically to derive the main results. A set of new delay‐dependent reconfigurable stabilization criteria, which guarantee the stability of closed‐loop systems in both fault‐free and faulty cases, is established in terms of linear matrix inequalities. Two numerical instances for linear delayed systems and the linearized model for the lateral motion of Boeing 747 are respectively simulated to illustrate the superiority and the effectiveness of the presented adaptive delay‐dependent results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, an adaptive prescribed performance control method is presented for a class of uncertain strict feedback nonaffine nonlinear systems with the coupling effect of time‐varying delays, dead‐zone input, and unknown control directions. Owing to the universal approximation property, fuzzy logic systems are used to approximate the uncertain terms in the system. Since there is no systematic approach to determine the required upper bounds of errors in control systems, the prior selection of control parameters to have a satisfactory performance is somehow impossible. Therefore, the prescribed performance technique as a solution is applied in this study to bring satisfactory performance indices to the system such as overshoot and steady state performance within a predetermined bound. Dynamic surface control strategy is also introduced to the proposed control scheme to address the “explosion of complexity” behavior existing in conventional backstepping methods. To ease the control design, the mean‐value theorem is utilized to transform the nonaffine system into the affine one. Moreover, with the help of this theorem, the unknown dead‐zone nonlinearity is separated into the linear and nonlinear disturbance‐like bounded term. The proposed method relaxes a prior knowledge of control direction by employing Nussbaum‐type functions, and the effect of time‐varying delays are compensated by constructing the proper Lyapunov‐Krasovskii functions. The proposed controller guarantees that all the closed‐loop signals are semiglobally uniformly ultimately bounded and the error evolves within the decaying prescribed bounds. In the end, in order to demonstrate the superiority of this method, simulation examples are given.  相似文献   

7.
This paper investigates the problem of global output feedback stabilization for a class of uncertain nonlinear time‐delay systems with unknown time delay in the states and the input in which both the input and the output are logarithmically quantized. The nonlinear functions of such systems are not completely known and satisfying certain bounded condition depending on the unmeasured states and the input. We construct a new dynamic high‐gain observer where only an output quantization instead of the output is available for measurement to dominate the unknown nonlinear functions view as external disturbances. A scaled change of coordinates and an appropriate Lyapunov‐Krasovskii functional are derived to achieve the global stabilization in the sense that all the states of such systems are defined, bounded in the maximal interval [0, +), and converge to the zero equilibrium. A numerical example is provided to illustrate the result.  相似文献   

8.
This paper is concerned with adaptive tracking control for switched uncertain nonlinear systems, which contain the time‐varying output constraint (TVOC) and input asymmetric saturation characteristic. In response to the unknown functions, the fuzzy logic systems are adopted. The controller is constructed by the backstepping technique. Based on the Tangent Barrier Lyapunov Function (BLF‐Tan), an adaptive switched control scheme is designed. It is demonstrated that all signals in the resulted system are semiglobally uniformly ultimately bounded with TVOC under arbitrary switchings. Furthermore, the effectiveness of presented control method is validated via the simulation example.  相似文献   

9.
The adaptive robust output tracking control problem is considered for a class of uncertain nonlinear time‐delay systems with completely unknown dead‐zone inputs. A new design method is proposed so that some adaptive robust output tracking control schemes with a rather simple structure can be constructed. It is not necessary to know the nonlinear upper bound functions of uncertain nonlinearities. In fact, the constructed output tracking control schemes are structurally linear in the state and have a self‐tuning control gain function that is updated by an adaptation law. In this paper, the dead‐zone input is nonsymmetric, and its information is assumed to be completely unknown. In addition, a numerical example is given to describe the design procedure of the presented method, and the simulations of this numerical example are implemented to demonstrate the validity of the theoretical results.  相似文献   

10.
Nonlinear time‐varying systems exist widely in practice. Therefore, it is of great theoretical importance and practical value to investigate the problem of controlling such systems. However, the results available in developing adaptive control to address such a problem are still limited. Especially a majority of them are restricted to be slowly time‐varying linear systems. This paper presents a modular‐based adaptive control scheme for parametric strict feedback nonlinear time‐varying systems. The parameters considered include both continuous and piecewise time‐varying parameters, and they are not necessarily restricted to be slowly time‐varying or infrequent jumping. The technique of adaptive backstepping with nonlinear damping is employed in the control design module, while the parameter projection algorithm is performed on the parameter estimation module. It is proved that the uniform boundedness of all closed‐loop system signals can be guaranteed with the proposed control scheme. The performance of the tracking error in the mean square sense with respect to the parameter variation rate is also established. Furthermore, perfect asymptotically tracking can be achieved when the varying rates of unknown parameters are in the space. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, an adaptive decentralized neural control problem is addressed for a class of pure‐feedback interconnected system with unknown time‐varying delays in outputs interconnections. By taking advantage of implicit function theorem and the mean‐value theorem, the difficulty from the pure‐feedback form is overcome. Under a wild assumption that the nonlinear interconnections are assumed to be bounded by unknown nonlinear functions with outputs, the difficulties from unknown interconnections are dealt with, by introducing continuous packaged functions and hyperbolic tangent functions, and the time‐varying delays in interconnections are compensated by Lyapunov–Krasovskii functional. Radial basis function neural network is used to approximate the unknown nonlinearities. Dynamic surface control is successfully extended to eliminate ‘the explosion of complexity’ problem in backstepping procedure. To reduce the computational burden, minimal learning parameters technique is successfully incorporated into this novel control design. A delay‐independent decentralized control scheme is proposed. With the adaptive neural decentralized control, only one estimated parameter need to be updated online for each subsystem. Therefore, the controller is more simplified than the existing results. Also, semiglobal uniform ultimate boundedness of all of the signals in the closed‐loop system is guaranteed. Finally, simulation studies are given to demonstrate the effectiveness of the proposed design scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
In this article, adaptive compensation designs are developed for nonlinear systems with uncertainties from the system functions and persistent actuator failures of characterizations that (i) some unknown system inputs are stuck at some unknown fixed or varying values at unknown time instants and (ii) the failure pattern always switches from one to another and the switching does not stop. Such a controlled plant is described by an uncertain time-varying nonlinear system, and some robust adaptive feedback linearization based failure compensation results are studied for closed-loop system stabilization and bounded output tracking for some specific conditions. To improve the tracking performance in the presence of persistent actuator failures, a new adaptive control scheme is developed, using the failure indicator function which contains the failure pattern and failure time in the formulation. Detailed stability and tracking performance are shown. Simulation results are shown to verify the effectiveness of the proposed adaptive actuator failure compensation method.  相似文献   

13.
A robust adaptive output‐feedback control scheme is proposed for a class of nonlinear systems with unknown time‐varying actuator faults. Additional unmodelled terms in the actuator fault model are considered. A new linearly parameterized model is proposed. The boundedness of all the closed‐loop signals is established. The desired control performance of the closed‐loop system is guaranteed by appropriately choosing the design parameters. The properties of the proposed control algorithm are demonstrated by two simulation examples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Without using Nussbaum gain, a novel method is presented to solve the unknown control direction problem for discrete‐time systems. The underlying idea is to fully exploit the convergence property of parameter estimates in well‐known adaptive algorithms. By incorporating two modifications into the control and the parameter update laws, respectively, we present an adaptive iterative learning control scheme for discrete‐time varying systems without the prior knowledge of the sign of control gain. It is shown that the proposed adaptive iterative learning control can achieve perfect tracking over the finite time interval while all the closed‐loop signals remain bounded. An illustrative example is presented to verify effectiveness of the proposed scheme. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This paper considers the problem of adaptive robust H state feedback control for linear uncertain systems with time‐varying delay. The uncertainties are assumed to be time varying, unknown, but bounded. A new adaptive robust H controller is presented, whose gains are updating automatically according to the online estimates of uncertain parameters. By combining an indirect adaptive control method and a linear matrix inequality method, sufficient conditions with less conservativeness than those of the corresponding controller with fixed gains are given to guarantee robust asymptotic stability and H performance of the closed‐loop systems. A numerical example and its simulation results are given to demonstrate the effectiveness and the benefits of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
This article is concerned with the problem of synchronization in nonlinear complex networks with multiple time‐varying delays via adaptive aperiodically intermittent control. The couplings inside nodes are assumed to be nonlinear and subject to multiple time‐varying delays. Meanwhile, the connection topology among the nodes can be directed and weighted. Then, the adaptive aperiodically intermittent control method is employed to realize synchronization and automatic modification to compensate the changes in dynamic errors. In addition, several synchronization criteria are rigorously induced based on the Lyapunov stability theory. Finally, the proposed control method is evaluated by utilizing numerical simulation. The results can be also applied to linear complex networks with delays.  相似文献   

17.
This paper addresses the stabilization problem of neutral systems. The neutral systems assumed to be subjected to nonlinear perturbations and mixed time‐varying delays. Specifically, the adaptive control method is used to stabilize the unknown neutral systems. If the system states and the delayed states with its derivatives are available for measurement, a new and less conservative adaptive control algorithm is proposed, and sufficient conditions for the existence of the adaptive control are derived based on Lyapunov's stability theory. The main idea is to make all the stability conditions of the system depend on desired arbitrary matrices, not on the given system matrices. This is accomplished by the adaptation process. Illustrative examples with numerical simulations are studied. The simulation results show the effectiveness of the proposed design methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The decentralized output feedback control problem is considered for a class of large‐scale systems with unknown time‐varying delays. The uncertain interconnections are bounded by general nonlinear functions with unknown coefficients. The control direction parameters are unknown for each subsystem, which brings a challenging issue for decentralized controller design. To deal with this problem, we propose a new decentralized control scheme with the help of Nussbaum function. The decentralized filter is designed at first. By constructing Lyapunov–Krasovskii functional, we design the dynamic output feedback controller. It is rigorously proved that the closed‐loop system is asymptotically stable. Finally, the simulation is performed, and the results verify the effectiveness of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a nonlinear gain feedback technique for observer‐based decentralized neural adaptive dynamic surface control of a class of large‐scale nonlinear systems with immeasurable states and uncertain interconnections among subsystems. Neural networks are used in the observer design to estimate the immeasurable states and thus facilitate the control design. Besides avoiding the complexity problem in traditional backstepping, the new nonlinear feedback gain method endows an automatic regulation ability into the pioneering dynamic surface control design and improvement in dynamic performance. Novel Lyapunov function is designed and rigorous stability analysis is given to show that all the closed‐loop signals are kept semiglobally uniformly ultimately bounded, and the output tracking errors can be guaranteed to converge to sufficient area around zero, with the bound values characterized by design parameters in an explicit manner. Simulation and comparative results are shown to verify effectiveness.  相似文献   

20.
In this paper, an adaptive control approach is designed for compensating the faults in the actuators of chaotic systems and maintaining the acceptable system stability. We propose a state‐feedback model reference adaptive control scheme for unknown chaotic multi‐input systems. Only the dimensions of the chaotic systems are required to be known. Based on Lyapunov stability theory, new adaptive control laws are synthesized to accommodate actuator failures and system nonlinearities. An illustrative example is studied. The simulation results show the effectiveness of the design method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号