首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a decentralized control algorithm for transporting a single object by two nonholonomic mobile robots. One of the robots acts as a leader, whose trajectory is planned by itself or defined previously, whereas the other robot, referred to as a follower, follows the leader by keeping a constant distance from the leader. The follower can also avoid obstacles while following the leader without any absolute information about their position. Furthermore, the two mobile robots can realize an omnidirectional motion of the object when the leader broadcasts some simple information to the follower. Some simulation results show a good performance by the proposed decentralized control algorithm. This work was presented, in part, at the Seventh International Symposium on Artificial Life and Robotics, Oita, Japan, January 16–18, 2002.  相似文献   

2.
In this paper, we propose a decentralized control system for transporting a single object by multiple non-holonomic mobile robots. Each agent used in the proposed system has two arms, which can steer around a joint offset from the centre point between two driving wheels. One of these mobile robots acts as a leader, who is assumed to be able to plan and to manipulate the omnidirectional motion of the object by using a resolved velocity control. Other robots, referred to as followers, cooperatively transport the object by keeping a constant relative position with the object using a simple PI control. Different from conventional leader–follower type systems that transport an object by multiple robots in coordination, the present followers can plan an action based on their local coordinate and need no absolute positional information. In addition, as a special case, a system consisting of only two robots is introduced, in which the follower robot not only has an arm length controller to follow the leader but also has a fuzzy controller as an avoidance controller to avoid obstacles or a posture controller to keep a desired posture of the object. Simulation results are given to demonstrate the good performance of the proposed systems.  相似文献   

3.
在这篇论文中, 我们利用一个统一的算法框架来解决移动机器人的队形控制和主动避障问题, 使得编队中的从机器人在避开障碍物的同时, 能够与被跟踪的主机器人保持期望的相对距离或相对方位. 在现有的关于主—从跟踪编队控制的文献中, 为了实现对主机器人快速准确的跟踪, 从机器人在跟踪控制时需要主机器人在惯性坐标系下的绝对运动速度作为队形跟踪控制器的输入. 然而, 在一些环境中, 主机器人的绝对运动状态很难获得. 这里, 我们将利用主—从机器人之间的相对速度来建立机器人编队系统的运动学模型. 基于这个模型的编队控制方法将不再需要测量主机器人的绝对运动速度. 进一步地, 上述的建模和控制方法被扩展为一个移动机器人的动态避障方法, 该方法利用机器人与障碍物之间相对运动状态作为避障控制器的信息输入. 利用由三个非完整移动机器人组成的多机器人系统, 验证了所提出编队控制方法的有效性.  相似文献   

4.
A virtual leader–follower formation control of a group of car-like mobile robots is addressed in this paper. First, the kinematic and dynamic models of car-like robots are transformed into a second-order leader–follower formation model which inherits all structural properties of the robot dynamic model. Then, a new observer-based proportional–integral-derivative formation controller is proposed to force that all robots construct a desired formation with respect to a predefined virtual leader. To improve the formation tracking and observation performance, the integral action is incorporated into the design of the observer–controller scheme. Adaptive robust and neural network techniques are also employed to compensate uncertain parameters, unmodeled dynamics, and external disturbances. Lyapunov’s direct method is utilized to show that the formation tracking and observation errors are semi-globally uniformly ultimately bounded. Then, the proposed controller is extended to the leader–follower formation of a team of tractor–trailer systems. Finally, simulation results illustrate the efficiency of the proposed controller.  相似文献   

5.
In this paper a case study of the cooperation of a strongly heterogeneous autonomous robot team, composed of a highly articulated humanoid robot and a wheeled robot with largely complementing and some redundant abilities is presented. By combining strongly heterogeneous robots the diversity of achievable tasks increases as the variety of sensing and motion abilities of the robot system is extended, compared to a usually considered team of homogeneous robots. A number of methodologies and technologies required in order to achieve the long-term goal of cooperation of heterogeneous autonomous robots are discussed, including modeling tasks and robot abilities, task assignment and redistribution, robot behavior modeling and programming, robot middleware and robot simulation. Example solutions and their application to the cooperation of autonomous wheeled and humanoid robots are presented in this case study. The scenario describes a tightly coupled cooperative task, where the humanoid robot and the wheeled robot track a moving ball, which is to be approached and kicked by the humanoid robot into a goal. The task can be fulfilled successfully by combining the abilities of both robots.  相似文献   

6.
Abstract

This work investigates the leader–follower formation control of multiple nonholonomic mobile robots. First, the formation control problem is converted into a trajectory tracking problem and a tracking controller based on the dynamic feedback linearization technique drives each follower robot toward its corresponding reference trajectory in order to achieve the formation. The desired orientation for each follower is selected such that the nonholonomic constraint of the robot is respected, and thus the tracking of the reference trajectory for each follower is feasible. An adaptive dynamic controller that considers the actuators dynamics in the design procedure is proposed. The dynamic model of the robots includes the actuators dynamics in order to obtain the velocities as control inputs instead of torques or voltages. Using Lyapunov control theory, the tracking errors are proven to be asymptotically stable and the formation is achieved despite the uncertainty of the dynamic model parameters. In order to assess the proposed control laws, a ROS-framework is developed to conduct real experiments using four ROS-enabled mobile robots TURTLEBOTs. Moreover, the leader fault problem, which is considered as the main drawback of the leader–follower approach, is solved under ROS. An experiment is conducted where in order to overcome this problem, the desired formation and the leader role are modified dynamically during the experiment.  相似文献   

7.
In this paper a control problem of leader–follower motion coordination of multiple nonholonomic mobile robots is addressed and subsequently in the proposed scheme, a reference trajectory generated based on the information from the leader is tracked by the follower robots. To alleviate demanded information on the leader, specifically to eliminate the measurement requirement or estimation of the leader's velocity and dynamics, a virtual vehicle is constructed whereby its trajectory converges to the reference trajectory of the follower. Trajectory tracking controller is then designed to allow the follower robot to track the virtual vehicle using neural network approximation, in combination with the backstepping and Lyapunov direct design technique and finally the performance and effectiveness of the controller is verified throughout the experiments.  相似文献   

8.
In this paper, we study the problem of modeling and controlling leader-follower formation of mobile robots. First, a novel kinematics model for leader-follower robot formation is formulated based on the relative motion states between the robots and the local motion of the follower robot. Using this model, the relative centripetal and Coriolis accelerations between robots are computed directly by measuring the relative and local motion sensors, and utilized to linearize the nonlinear system equations. A formation controller, consisting of a feedback linearization part and a sliding mode compensator, is designed to stabilize the overall system including the internal dynamics. The control gains are determined by solving a robustness inequality and assumed to satisfy a cooperative protocol that guarantees the stability of the zero dynamics of the formation system. The proposed controller generates the commanded acceleration for the follower robot and makes the formation control system robust to the effect of unmeasured acceleration of the leader robot. Furthermore, a robust adaptive controller is developed to deal with parametric uncertainty in the system. Simulation and experimental results have demonstrated the effectiveness of the proposed control method.  相似文献   

9.
A new formation navigation approach derived from multi-robots cooperative online FastSLAM is proposed. In this approach,the leader and follower robots are defined.The posteriori estimation of the leader robot state is treated as a relative reference for all follower robots to correct their state priori estimations.The control volume of individual follower will be achieved from the results of the corrected estimation.All robots are observed as landmarks with known associations by the others and are considered in their landmarks updating.By the method,the errors of the robot posterior estimations are reduced and the formation is well kept.The simulation and physical experiment results show that the multi-robots relative localization accuracy is improved and the formation navigation control is more stable and efficient than normal leader-following strategy.The algorithm is easy in implementation.  相似文献   

10.
This paper investigates the leader–follower formation control problem for nonholonomic mobile robots based on a bioinspired neurodynamics based approach. The trajectory tracking control for a single nonholonomic mobile robot is extended to the formation control for multiple nonholonomic mobile robots based on the backstepping technique, in which the follower can track its real-time leader by the proposed kinematic controller. An auxiliary angular velocity control law is proposed to guarantee the global asymptotic stability of the followers and to further guarantee the local asymptotic stability of the entire formation. Also a bioinspired neurodynamics based approach is further developed to solve the impractical velocity jumps problem. The rigorous proofs are given by using Lyapunov theory. Simulations are also given to verify the effectiveness of the theoretical results.  相似文献   

11.
We solve the formation tracking control problem for mobile robots via linear control, under the assumption that each agent communicates only with one ‘leader’ robot and with one follower, hence forming a spanning-tree topology. We assume that the communication may be interrupted on intervals of time. As in the classical tracking control problem for non-holonomic systems, the swarm is driven by a fictitious robot which moves about freely and which is a leader to one robot only. Our control approach is decentralised and the control laws are linear with time-varying gains; in particular, this accounts for the case when position measurements may be lost over intervals of time. For both velocity-controlled and force-controlled systems, we establish uniform global exponential stability, hence consensus formation tracking, for the error system under a condition of persistency of excitation on the reference angular velocity of the virtual leader and on the control gains.  相似文献   

12.
A multi-agent reinforcement learning algorithm with fuzzy policy is addressed in this paper. This algorithm is used to deal with some control problems in cooperative multi-robot systems. Specifically, a leader-follower robotic system and a flocking system are investigated. In the leader-follower robotic system, the leader robot tries to track a desired trajectory, while the follower robot tries to follow the reader to keep a formation. Two different fuzzy policies are developed for the leader and follower, respectively. In the flocking system, multiple robots adopt the same fuzzy policy to flock. Initial fuzzy policies are manually crafted for these cooperative behaviors. The proposed learning algorithm finely tunes the parameters of the fuzzy policies through the policy gradient approach to improve control performance. Our simulation results demonstrate that the control performance can be improved after the learning.  相似文献   

13.
This paper studies the fully distributed formation control problem of multi-robot systems without global position measurements subject to unknown longitudinal slippage constraints.It is difficult for robots to obtain accurate and stable global position information in many cases,such as when indoors,tunnels and any other environments where GPS(global positioning system)is denied,thus it is meaningful to overcome the dependence on global position information.Additionally,unknown slippage,which is hard to avoid for wheeled robots due to the existence of ice,sand,or muddy roads,can not only affect the control performance of wheeled robot,but also limits the application scene of wheeled mobile robots.To solve both problems,a fully distributed finite time state observer which does not require any global position information is proposed,such that each follower robot can estimate the leader’s states within finite time.The distributed adaptive controllers are further designed for each follower robot such that the desired formation can be achieved while overcoming the effect of unknown slippage.Finally,the effectiveness of the proposed observer and control laws are verified by simulation results.  相似文献   

14.
不确定环境下多机器人的动态编队控制   总被引:2,自引:0,他引:2  
提出了一种不确定环境下多机器人的动态编队控制方法.通过队形参数矩阵确立多机器人之间的相对 位置关系,将全局队形控制问题转化为跟随机器人离轴点对虚机器人(与领航机器人运动方向一致,且对领航机器 人保持期望的相对距离和观测方位角)离轴点的跟踪.基于建立的跟随机器人和领航机器人之间的误差跟踪系统模 型设计相应控制律实现队形保持,并提出了防止机器人与障碍物及其它机器人碰撞的避障策略.仿真结果表明了所 提方法的可行性和有效性.  相似文献   

15.
《Applied Soft Computing》2007,7(1):115-125
In this paper, an approach to the behavior acquisition required for humanoid robots to carry out a cooperative transportation task is proposed. In the case of object transportation involving two humanoid robots, mutual position shifts may occur due to the body swinging of the robots. Therefore, it is necessary to correct the position in real-time. Developing the position shift correction system requires a great deal of effort. Solution to the problem of learning the required behaviors is obtained by using the Classifier System and Q-Learning. The successful cooperation of two HOAP-1 humanoid robots in the transportation task has been confirmed by several experimental results.  相似文献   

16.
In this paper, a novel framework which enables humanoid robots to learn new skills from demonstration is proposed. The proposed framework makes use of real-time human motion imitation module as a demonstration interface for providing the desired motion to the learning module in an efficient and user-friendly way. This interface overcomes many problems of the currently used interfaces like direct motion recording, kinesthetic teaching, and immersive teleoperation. This method gives the human demonstrator the ability to control almost all body parts of the humanoid robot in real time (including hand shape and orientation which are essential to perform object grasping). The humanoid robot is controlled remotely and without using any sophisticated haptic devices, where it depends only on an inexpensive Kinect sensor and two additional force sensors. To the best of our knowledge, this is the first time for Kinect sensor to be used in estimating hand shape and orientation for object grasping within the field of real-time human motion imitation. Then, the observed motions are projected onto a latent space using Gaussian process latent variable model to extract the relevant features. These relevant features are then used to train regression models through the variational heteroscedastic Gaussian process regression algorithm which is proved to be a very accurate and very fast regression algorithm. Our proposed framework is validated using different activities concerned with both human upper and lower body parts and object grasping also.  相似文献   

17.
Humanoid robots introduce instabilities during biped march that complicate the process of estimating their position and orientation along time. Tracking humanoid robots may be useful not only in typical applications such as navigation, but in tasks that require benchmarking the multiple processes that involve registering measures about the performance of the humanoid during walking. Small robots represent an additional challenge due to their size and mechanic limitations which may generate unstable swinging while walking. This paper presents a strategy for the active localization of a humanoid robot in environments that are monitored by external devices. The problem is faced using a particle filter method over depth images captured by an RGB-D sensor in order to effectively track the position and orientation of the robot during its march. The tracking stage is coupled with a locomotion system controlling the stepping of the robot toward a given oriented target. We present an integral communication framework between the tracking and the locomotion control of the robot based on the robot operating system, which is capable of achieving real-time locomotion tasks using a NAO humanoid robot.  相似文献   

18.
This paper considers the receding horizon tracking control of the unicycle‐type robot subject to coupled input constraint based on virtual structure. The tracking position of the follower is considered to be a virtual structure point with respect to a Frenet–Serret frame fixed on the leader, and the desired control input of the follower not only depend on the input of the leader but also the separation vector. Firstly, a sufficient input condition for the leader robot is given to enable the follower to track its desired position while satisfying its inputs constraint. Secondly, receding horizon control scheme is designed for the follower robot, in which the recursive feasibility is guaranteed by developing a diamond‐shaped positively invariant terminal‐state region and its corresponding controller. Finally, simulation results are provided to verify the effectiveness of the scheme proposed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
An autonomous environmental visual perception approach for humanoid robots is presented. The proposed framework exploits the available model information and the context acquired during global localization by establishing a vision-model coupling in order to overcome the limitations of purely data-driven approaches in object recognition and surrounding status assertion. The exploitation of the model-vision coupling through the properceptive components is the key element to solve complex visual assertion-queries with proficient performance. An experimental evaluation with the humanoid robot ARMAR-IIIa is presented.  相似文献   

20.
In this paper, asymptotically stable control laws are developed for leader–follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation. First, a kinematic controller is developed around control strategies for single mobile robots and the idea of virtual leaders. The virtual leader is replaced with a physical mobile robot leader, and an auxiliary velocity control law is developed in order to prove the global asymptotic stability of the followers which in turn allows the local asymptotic stability of the entire formation. A novel approach is taken in the development of the dynamical controller such that the torque control inputs for the follower robots include the dynamics of the follower robot as well as the dynamics of its leader, and two cases are considered—the case when the robot dynamics are known and the case when they are unknown. In the first case, a robust adaptive control term is utilized to account for unmodeled dynamics. For the latter, a robust adaptive term is augmented with a NN control law to achieve asymptotic tracking performance in contrast with most NN controllers where a bounded tracking error result is shown. Additionally, the NN approximation error is assumed to be a function of tracking errors instead of a constant upper bound, which is commonly found in the literature. The stability of the follower robots as well as the entire formation is demonstrated in each case using Lyapunov methods and numerical results are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号