共查询到11条相似文献,搜索用时 0 毫秒
1.
《Advanced Robotics》2013,27(3):281-295
In the routine inspection of industrial or other areas, teams of robots with various sensors could operate together to great effect, but require reliable, accurate and flexible localization capabilities to be able to move around safely. We demonstrate accurate localization for an inspection team consisting of a robot with stereo active vision and its blind companion with an active lighting system, and show that in this case a single sensor can be used for measuring the position of known or unknown scene features, measuring the relative location of the two robots and actually carrying out an inspection task. 相似文献
2.
针对移动机器人在未知环境中的导航问题,提出并实现一个新的基于视觉显著区域的拓扑定位系统。首先采用中心—周围差方法在多尺度图像空间中计算颜色及纹理对比,根据检测出的显著线索构造适宜尺寸的显著区域。然后将这些场景中的视觉显著区域利用隐马尔科夫模型组织成为拓扑图中的一个顶点,从而将定位问题转化为隐马尔科夫模型(HMM)的估值问题。该系统支持机器人在线建立环境的拓扑模型,同时进行定位。实验结果表明,该方法能够在机器人移动过程中发生尺度、2维旋转、视角等变化时稳定地检测出显著视觉区域,场景识别率较高。实验证明该定位系统有能力保证机器人在未知环境中的安全导航。 相似文献
3.
Bearing-only visual SLAM for small unmanned aerial vehicles in GPS-denied environments 总被引:1,自引:0,他引:1
This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observations from an onboard monocular camera.A homography based approach is used to calculate the motion of the vehicle in 6 degrees of freedom by image feature match.This visual measurement is fused with the inertial outputs by an indirect extended Kalman filter(EKF) for attitude and velocity estimation.Then,another EKF is employed to estimate the position of the vehicle and the locations of the features in the map.Both simulations and experiments are carried out to test the performance of the proposed system.The result of the comparison with the referential global positioning system/inertial navigation system(GPS/INS) navigation indicates that the proposed SLAM can provide reliable and stable state estimation for small UAVs in GPS-denied environments. 相似文献
4.
Dominik JohoAuthor Vitae Martin Senk Author VitaeWolfram Burgard Author Vitae 《Robotics and Autonomous Systems》2011,59(5):319-328
We consider the problem of efficiently finding an object with a mobile robot in an initially unknown, structured environment. The overall goal is to allow the robot to improve upon a standard exploration technique by utilizing background knowledge from previously seen, similar environments. We present two conceptually different approaches. Whereas the first method, which is the focus of this article, is a reactive search technique that decides where to search next only based on local information about the objects in the robot’s vicinity, the second algorithm is a more global and inference-based approach that explicitly reasons about the location of the target object given all observations made so far. While the model underlying the first approach can be learned from data of optimal search paths, we learn the model of the second method from object arrangements of example environments. Our application scenario is the search for a product in a supermarket. We present simulation and real-world experiments in which we compare our strategies to alternative methods and also to the performance of humans. 相似文献
5.
6.
Previous research identified that learning assembly tasks in Virtual Environments (VEs) is more difficult than in Real Environments (REs). This work's objective is to identify the key visual areas for both environments when performing an assembly task for ten consecutive cycles, when following visual instructions and when having visual distractors. Using an eye-tracker, we identified the key visual areas required for an assembly task in both environments. Results indicate that practice allowed participants to reduce their assembly time in both environments. They also indicate that two areas, Assembly Area and Blocks, concentrated a higher proportion of eye-fixations; 59.98% for REs and 81.48% for VEs, with a statistically significant observation difference between environments (t-test value = −14.23, with p-value <0.00001 and Cohen's d = 6.36). We conclude that participants considered the same key visual areas for both environments and that VE interaction has a significant role in observation behavior. 相似文献
7.
Artificial navigation systems stand to benefit greatly from learning maps of visual environments, but traditional map-making techniques are inadequate in several respects. This paper describes an adaptive, view-based, relational map-making system for navigating within a 3D environment defined by a spatially distributed set of visual landmarks. Inspired by an analogy to learning aspect graphs of 3D objects, the system comprises two neurocomputational architectures that emulate cognitive mapping in the rat hippocampus. The first architecture performs unsupervised place learning by combining the “What” with the “Where”, namely through conjunctions of landmark identity, pose, and egocentric gaze direction within a local, restricted sensory view of the environment. The second associatively learns action consequences by incorporating the “When”, namely through conjunctions of learned places and coarsely coded robot motions. Together, these networks form a map reminiscent of a partially observable Markov decision process, and consequently provide an ideal neural substrate for prediction, environment recognition, route planning, and exploration. Preliminary results from real-time implementations on a mobile robot called MAVIN (the Mobile Adaptive VIsual Navigator) demonstrate the potential for these capabilities. 相似文献
8.
针对空间机械臂在地面装调与空间应用时,由于重力环境变化导致机械臂模型发生变化的问题,提出了一种自抗扰控制算法,用于完成空间机械臂轨迹跟踪控制的任务.该算法通过将系统模型及未知外扰作为系统的总和扰动,并利用扩张状态观测器对该扰动进行观测且给予补偿,从而提高了系统抗扰的性能.当机械臂模型随重力环境变化而发生变化时,使用同一个自抗扰控制器对其末端轨迹进行控制,均能取得较好的控制效果.通过对系统的稳定性进行分析,证明了所设计控制器的有效性.将仿真结果与PD控制及自适应鲁棒控制做比较,结果表明该控制算法不仅能适应机械臂模型的变化而且还能有效抵抗系统的扰动,从而使系统具有较强的鲁棒性. 相似文献
9.
针对城市环境中全球定位系统(GPS)信号易受到高层建筑遮挡而无法提供准确位置信息的问题,提出了一种基于建筑物竖直侧平面特征及建筑物二维轮廓地图的移动机器人定位方法。该方法利用车载视觉,首先对两视图间的竖直直线特征进行匹配;然后基于匹配的竖直线特征对建筑物的竖直侧平面进行重建;最后,利用建筑物竖直侧平面特征及建筑物二维俯视轮廓地图,设计了一种基于随机采样一致性(RANSAC)的移动机器人视觉定位算法,从而解决了在建筑物方向任意的复杂城市环境中的机器人定位问题。实验结果表明,算法的平均定位误差约为3.6m,可以有效地提高移动机器人在复杂城市环境中自主定位的精度及鲁棒性。 相似文献
10.
针对现有故障定位技术不能满足多节点故障定位的要求,尤其当网络中存在大量故障节点时,提出了一种基于主动探测的探测路径选择算法。该算法主要包括用于故障检测的贪婪路径选择算法和用于故障定位的禁忌链路搜索算法。在故障检测阶段,使用贪婪路径选择算法迭代地选择具有最小权重的探测路径覆盖网络中的节点。在故障定位阶段,使用禁忌链路搜索算法多次生成候选路径集以选择最合适的探测路径来解决多节点故障定位问题。在随机网络拓扑和真实网络拓扑上的仿真结果表明,与现有的节点故障定位算法相比,探测路径选择算法具有更高的成功定位率和更低的探测成本。 相似文献
11.
为了解决机器人同时定位、地图构建和目标跟踪问题,提出了一种基于交互多模滤波(interacting multiple model filter, IMM)的方法.该方法将机器人状态、目标状态和环境特征状态作为整体来构成系统状态向量并利用全关联扩展式卡尔曼滤波算法对系统状态进行估计,由此随着迭代估计的进行,系统各对象状态之间将产生足够的相关性,这种相关性能够正确反映各对象状态估计间的依赖关系,因此提高了目标跟踪的准确性.该方法进一步和传统的IMM滤波算法相结合,从而解决了目标运动模式未知性问题,IMM方法的采用使系统在完成目标追踪的同时还能对其运动模态进行估计,进而提高了该算法对于机动目标的跟踪能力.仿真实验验证了该方法对机器人和目标的运动轨迹以及目标运动模态进行估计的准确性和有效性. 相似文献