首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Active Appearance-Based Robot Localization Using Stereo Vision   总被引:2,自引:0,他引:2  
A vision-based robot localization system must be robust: able to keep track of the position of the robot at any time even if illumination conditions change and, in the extreme case of a failure, able to efficiently recover the correct position of the robot. With this objective in mind, we enhance the existing appearance-based robot localization framework in two directions by exploiting the use of a stereo camera mounted on a pan-and-tilt device. First, we move from the classical passive appearance-based localization framework to an active one where the robot sometimes executes actions with the only purpose of gaining information about its location in the environment. Along this line, we introduce an entropy-based criterion for action selection that can be efficiently evaluated in our probabilistic localization system. The execution of the actions selected using this criterion allows the robot to quickly find out its position in case it gets lost. Secondly, we introduce the use of depth maps obtained with the stereo cameras. The information provided by depth maps is less sensitive to changes of illumination than that provided by plain images. The main drawback of depth maps is that they include missing values: points for which it is not possible to reliably determine depth information. The presence of missing values makes Principal Component Analysis (the standard method used to compress images in the appearance-based framework) unfeasible. We describe a novel Expectation-Maximization algorithm to determine the principal components of a data set including missing values and we apply it to depth maps. The experiments we present show that the combination of the active localization with the use of depth maps gives an efficient and robust appearance-based robot localization system.  相似文献   

2.
    
Class Activation Map (CAM) is one of the most popular approaches to visually explain the convolutional neural networks (CNNs). To obtain fine-grained saliency maps, some works fuse saliency signals of the same image at larger scales. However, existing methods based on multi-scale fusion cannot effectively remove the noise from larger-scale images. In this paper, we propose Master-CAM, which uses Master map to guide multi-scale fusion process to obtain a high-quality class activation map. Master-CAM utilizes the general localization ability of the Master map to reduce the noise of the maps. We call the one with the general localization ability among the saliency maps from the same image as Master map, which is the saliency map of the original-scale input in the multi-scale scenario. In addition, we also present a simple yet effective fusion strategy, Master-Fusion, which is derived from the fusion operation in Master-CAM. Master-Fusion strategy can be easily attached to some saliency methods to improve the performance of these methods. We show through qualitative and quantitative experiments that the proposed Master-CAM outperforms the state-of-the-art methods in different CNN frameworks and datasets.  相似文献   

3.
大量垃圾邮件的出现给用户收发电子邮件带来极大困扰。贝叶斯算法由于在垃圾邮件处理上表现出很高的准确度,因此受到了广泛关注。本文介绍了贝叶斯算法的理论依据,分析了贝叶斯算法的优缺点,总结了贝叶斯的相关改进算法,最后对贝叶斯算法进行了总结和展望。  相似文献   

4.
基于内容过滤的反垃圾邮件系统的设计与实现   总被引:1,自引:0,他引:1  
研究基于内容过滤的反垃圾邮件技术,主要包括贝叶斯概率统计和分布式校验值交换,进行一个反垃圾邮件系统的设计和实现.在反垃圾邮件系统的研究中,通过提供和改进MTA 层过滤接口、MDA 层过滤接口和用户反馈机制,可以完善整个邮件系统的防御体系,并支持个性化的反垃圾邮件控制功能.最后,在实验中通过采用K次交叉验证的方法,得到系统的评价指标,并证明了系统的有效性.  相似文献   

5.
对基于贝叶斯滤波原理的机器人定位方法提出了一个通用框架,进行了贝叶斯滤波方法的推导,理顺了贝叶斯总体框架以及卡尔曼滤波定位、多假设定位、马尔可夫定位、蒙特卡罗定位方法之间的内在逻辑关系。回顾了基于概率推理框架的各种机器人定位方法的发展过程、目前发展水平,并针对各自的利弊进行了比较。基于采样的蒙特卡罗定位算法能够描述多峰分布,可近似大范围的概率分布,能够有效解决定位过程中出现的歧义情况以及绑架情况等,因此重点对蒙特卡罗定位算法的实现过程以及存在的问题进行了详细的阐述,同时对研究难点和未来的发展趋势做了展望。  相似文献   

6.
    
Most of the existing appearance-based topological mapping algorithms produce dense topological maps in which each image stands as a node in the topological graph. Sparser maps can be built by representing groups of visually similar images of a sequence as nodes of a topological graph. In this paper, we present a sparse/hierarchical topological mapping framework which uses Image Sequence Partitioning (ISP) to group visually similar images of a sequence as nodes which are then connected on the occurrence of loop closures to form a topological graph. An indexing data structure called Hierarchical Inverted File (HIF) is proposed to store the sparse maps so as to perform loop closure at the two different resolutions of the map namely the node level and image level. TFIDF weighting is combined with spatial and frequency constraints on the detected features for improved loop closure robustness. Our approach is compared with two other existing sparse mapping approaches which use ISP. Sparsity, efficiency and accuracy of the resulting maps are evaluated and compared to that of the other two techniques on publicly available outdoor omni-directional image sequences.  相似文献   

7.
    
Email spam has become a major problem for Internet users and providers. One major obstacle to its eradication is that the potential solutions need to ensure a very low false‐positive rate, which tends to be difficult in practice. We address the problem of low‐FPR classification in the context of naive Bayes, which represents one of the most popular machine learning models applied in the spam filtering domain. Drawing from the recent extensions, we propose a new term weight aggregation function, which leads to markedly better results than the standard alternatives. We identify short instances as ones with disproportionally poor performance and counter this behavior with a collaborative filtering‐based feature augmentation. Finally, we propose a tree‐based classifier cascade for which decision thresholds of the leaf nodes are jointly optimized for the best overall performance. These improvements, both individually and in aggregate, lead to substantially better detection rate of precision when compared with some of the best variants of naive Bayes proposed to date. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
基于数据挖掘方法的电子邮件过滤   总被引:8,自引:0,他引:8  
电子邮件在给人们带来很多方便抽时,也产生了一个新的问题,即大量垃圾邮件的出现。邮件过滤就是从大量邮件中过滤出垃圾邮件,帮助用户寻找到所需要的有用邮件。本文介绍了一个基于数据挖掘方法的邮件过滤系统原型,给出了Bayes方法的几个基于概念,并重点讨论了要实现这个系统所需要处理的几个关键问题。  相似文献   

9.
针对移动机器人在多传感器融合定位过程中因噪声统计特性未知或不准确引起的定位精度不高的问题,提出了一种基于Sage-Husa滤波改进的无损卡尔曼滤波(UKF)移动机器人定位算法。首先建立了移动机器人定位相关模型;然后根据噪声统计特性时变特点利用Sage-Husa中的噪声估计器,对状态噪声和量测噪声进行自适应地估计,减小扰动噪声给定位解算带来的误差;接着在状态更新时引入收敛因子,加快算法收敛速度;最后将UKF算法和改进的UKF算法应用到实验室移动机器人中进行仿真实验。实验结果表明,所提出的算法对状态扰动具有较强的抵制能力,对机器人定位的准确性与稳定性的提升具有显著效果。  相似文献   

10.
如何提高回环检测(loop closure detection)的准确率,是同时定位与地图构建系统(simultaneous localization and mapping,SLAM)中实现更高位姿恢复精度的关键问题之一。基于传统的词袋模型原理,构建了一个全新的算法框架。该算法使用预处理的Faster-RCNN神经网络对图像序列进行检测,利用所检测出的图像语义特征种类、像素位置及特征图等信息来构建具有标志性的二维语义特征向量图,并使用非线性的累积误差来计算二维语义特征向量图之间的相似度,且据此计算初始回环,经位姿验证后得到最终回环结果。通过与传统词袋模算法的分析比较,实验结果验证了所提算法的有效性,实现了更高精度、效率的回环检测。  相似文献   

11.
王丽侠 《微机发展》2005,15(9):42-44,47
研究了邮件过滤的主要方法,提出了将Agent技术、粗糙集和最小风险的Bayes分类方法结合的邮件过滤及个性化分类模型。该模型首先利用粗糙集方法对邮件样本向量空间进行约简,然后利用已知样本对最小风险的Bayes分类器进行训练,得到具有智能分类功能的邮件分类器,利用该分类器过滤掉用户不感兴趣的邮件,并利用Agent学习用户的个性化知识,最后利用学习的知识将用户感兴趣邮件进行再分类。  相似文献   

12.
Bayes理论和邻域平均法在图像去噪中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
去噪处理是图像处理中较为重要的环节。针对加噪后的图像的直方图进行分析,依据最小错误率贝叶斯决策和均值滤波理论,提出一种基于均值滤波和最小错误率贝叶斯决策的去噪方法。首先对加入噪声后的图像直方图进行统计,从中估计出服从分布的不同类别参数,对图像中每一像素点进行判断是否为噪声,对噪声点进行基于均值滤波的处理。通过试验,取得了良好的效果。  相似文献   

13.
提升(Boosting)是改善基分类器学习的有效手段。而研究表明,Boosting对于朴素贝叶斯的改善效果不明显。文章提出了一种新的提升算法——ActiveBoost,ActiveBoost结合主动学习挖掘未分配类别标注中样本的信息,并将不稳定性引入到朴素贝叶斯的构造过程。在UCI机器学习数据库的实验结果证明了该算法的有效性。  相似文献   

14.
邓维斌  洪智勇 《计算机应用》2010,30(8):2006-2009
如何将邮件的头信息和内容信息有效结合起来进行垃圾邮件过滤备受研究人员的关注。基于粗糙集具有很好地处理不确定信息的特点,提出了一种基于粗糙集的两阶段邮件过滤方法,首先根据邮件头信息将其分为正常邮件、垃圾邮件和可疑邮件,再根据邮件内容将可疑邮件分为正常和垃圾邮件。通过在中英文邮件集上的测试实验,证明了所提出的邮件过滤方法不仅能提高垃圾邮件过滤的准确率,而且能大幅降低误杀率。  相似文献   

15.
朴素Bayes邮件过滤算法由于简单、易于理解,已被人们广泛接受,并应用到一些商用邮件系统当中.但面对目前垃圾邮件问题依然严重的现状,人们逐渐开始认识到采用简单的朴素Bayes邮件过滤算法已不能满足现有邮件过滤的性能要求.Bayes网络一直以来作为知识发现的一个重要分支,是人们研究的热点;邮件过滤问题也可以映射到一个Bayes决策网络模型中.通过构建针对邮件过滤的Bayes决策网络模型,并经过概率学习对关键节点作Bayes参数估计,可以实现邮件的概率分类发现.邮件样本试验结果表明新算法与朴素Bayes邮件过滤算法相比具有更快的收敛速度和更高的稳定性.  相似文献   

16.
一个基于决策粗糙集理论的信息过滤模型   总被引:3,自引:0,他引:3  
介绍了决策粗糙集理论,提出了一个基于决策粗糙集理论的通用信息过滤模型,并通过对电子邮件进行过滤,与传统的基于文本内容的信息过滤方法——朴素贝叶斯方法进行了比较,比较结果证明该文提出的基于决策粗糙集理论的信息过滤模型可以降低误判率,有较高的正确率。  相似文献   

17.
声源定位是一个应用非常广泛的研究课题。针对阵列定位精度不高的问题,提出一种基于压缩感知的声源定位算法。通过构建冗余字典,该算法将网络中的多个未知源节点的位置作为一个系数向量,然后采用稀疏贝叶斯学习算法估计声源位置。为了增快算法的运行速度,提出一种有效的多分辨率字典构建方法,并迭代地减小定位空间,提高定位精度。实验结果显示,基于压缩感知的声源定位算法可以改善多源节点的定位能力,且有效地减少所需的传感器节点。此外,与基于子空间的算法比较显示,该算法的性能更优越。  相似文献   

18.
艾祖亮  张立民 《计算机仿真》2007,24(10):173-176
环境贴图是绘制物体表面漫反射和镜面反射效果的一种有效方法.为了把环境贴图应用于视景仿真中,实现场景对象的真实感绘制,首先从分析球面调和函数入手,提出了漫反射环境纹理图的快速计算方法;然后在研究镜面反射模型时,提出采用箱式滤波器代替Phong余弦函数滤波的方法,从而简化了镜面反射环境纹理图的滤波计算;最后在实现阶段,采用立方体环境纹理图表示场景光照环境,并对纹理图进行分级细化从而提高了绘制效率.实验表明,该方法在增强对象真实感的同时,其运算速度也能满足交互系统的需求,非常适合视景仿真应用.  相似文献   

19.
基于粗糙集的加权朴素贝叶斯邮件过滤方法   总被引:5,自引:3,他引:2  
邮件过滤中有两个关键问题,一是如何选择有效的邮件特征集,二是设计较好的邮件过滤算法。在对邮件特性进行分析的基础上,综合邮件头及邮件内容的主要形象特征给出了一种新的邮件特征集提取方法。用粗糙集的信息观点度量了各属性的重要性,并以此为权重进行加权朴素贝叶斯垃圾邮件过滤,有效地解决了朴素贝叶斯分类中的条件依赖性问题。通过在中英文邮件集上的测试实验,证明了所提出的邮件过滤方法的有效性。  相似文献   

20.
基于改进Naïve Bayes的垃圾邮件过滤模型研究   总被引:1,自引:0,他引:1  
分析了目前在垃圾邮件过滤中广泛应用的Naïve Bayes过滤模型(NBF),指出了期望交叉熵(ECE)特征词选取方法的不足。提出了改进的Naïve Bayes垃圾邮件过滤模型(A-NBF),用改进的期望交叉熵(AECE)选取垃圾邮件特征词,并在邮件分类过程中对特征词进行加权,从而提高对垃圾邮件过滤的精度。实验结果可以看出A-NBF比NBF在过滤精度方面有明显的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号