首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
某ZG06Cr13Ni4Mo不锈钢水轮机叶片表面在服役过程中发生了严重的局部腐蚀。通过宏观及微观腐蚀形貌的观察,结合能谱(EDS)分析等方法对该叶片进行了失效分析,确定了该叶片发生腐蚀的原因。结果表明:点蚀主要发生在表面局部塑性变形明显的区域,斑状腐蚀主要发生在焊接修复部位;引起点蚀的主要原因是硫酸盐还原菌(SRB)引起的微生物腐蚀(MIC),而表面的加工区缺陷和焊接修复缺陷促进了点蚀和斑状腐蚀的进行。  相似文献   

2.
Φ127mm×9.19mm IEU S-135钻杆腐蚀失效分析   总被引:1,自引:0,他引:1  
对发生管体刺穿、外壁腐蚀的Φ127mm×9.19mm IEU S-135钻杆进行了失效分析。结果表明,钻杆的化学成分、金相组织、机械性能均符合API标准及订货技术条件。钻杆管体刺穿是由于内壁发生严重H_2S腐蚀+氧腐蚀造成的。钻杆管体外壁腐蚀是由氧腐蚀引起的。  相似文献   

3.
Ф127minx9.19mm IEU S-135钻杆腐蚀失效分析   总被引:3,自引:0,他引:3  
张毅  赵鹏 《钢管》2003,32(4):10-16
对发生管体刺穿、外壁腐蚀的Ф127mm×9.19mm IEU S-135钻杆进行了失效分析.结果表明,钻杆的化学成分、金相组织、机械性能均符合API标准及订货技术条件.钻杆管体刺穿是由于内壁发生严重H2S腐蚀+氧腐蚀造成的.钻杆管体外壁腐蚀是由氧腐蚀引起的.  相似文献   

4.
张毅  赵鹏 《钢管》2003,32(4)
对发生管体刺穿、外壁腐蚀的Ф127mm×9.19mm IEU S-135钻杆进行了失效分析.结果表明,钻杆的化学成分、金相组织、机械性能均符合API标准及订货技术条件.钻杆管体刺穿是由于内壁发生严重H2S腐蚀+氧腐蚀造成的.钻杆管体外壁腐蚀是由氧腐蚀引起的.  相似文献   

5.
某船用辅冷凝器B30合金管发生了大面积早期失效。通过失效B30合金管的腐蚀形貌、腐蚀产物及极化曲线分析其失效原因。结果表明:B30合金管发生了选择性腐蚀,其内表面局部区域发生的严重腐蚀是由点蚀引起的脱镍腐蚀,点蚀坑内的酸化环境使脱镍腐蚀更加严重;由于铜的电位正于镍的,铜在晶粒边界附近发生回沉积。  相似文献   

6.
通过金相检验、能谱分析、物相分析等技术手段对反应釜内部锆复合层焊缝处开裂问题进行分析,结果表明:该反应釜内部锆复合层的主要腐蚀形式包括点蚀、晶间腐蚀以及由于第二相引起的腐蚀;点蚀发生的主要原因是金属基体和氧化膜之间形成活化—钝化腐蚀电池,从而不断地从表面向内部腐蚀,形成点蚀;局部严重腐蚀的主要原因是在焊接过程中气体保护不充分,焊接时导热性不好或焊接参数过高,造成在焊缝处形成二氧化锆,导致晶界和晶粒之间存在电化学不均匀性,从而产生晶间腐蚀。  相似文献   

7.
对带有腐蚀坑的φ127mm API钻杆内、外螺纹端钻杆内加厚过渡带管体刺漏前后的速度场和压力场进行模拟。结果表明:流场的诱导对存在腐蚀坑的钻杆管体的刺漏失效起着承上启下的作用,腐蚀坑越深,腐蚀坑底的湍动能越大;入口流量增大,腐蚀坑部位的剪切应力越大,钻杆的刺漏越容易发生;在相同的井况条件下,钻杆内螺纹接头端内加厚过渡带比外螺纹端刺漏失效多的原因与流场的Bernoulli效应密切相关;当钻杆内加厚过渡带管体存在刺孔时,钻杆发生刺漏失效与相应位置的环空压力密切相关,在环空压力小的位置刺漏时的湍动能和最大速度最大。  相似文献   

8.
某油气田X52螺旋焊管外壁发生局部腐蚀,通过送检管段理化性能测试、土壤环境分析、硫酸盐还原菌(SRB)腐蚀试验等系统研究了该管道腐蚀失效的原因。结果表明:该X52螺旋焊管的化学成分和组织均符合技术规范的要求;管体周围土壤含水量较高且含有大量的硫酸盐和硫酸盐还原菌,管道底部防腐蚀层剥落区发生硫酸盐还原菌的厌氧腐蚀,导致管体局部产生无定向分布的严重蚀坑。  相似文献   

9.
目前,对G105钢钻杆在不同Cl-浓度下的腐蚀研究较少,通过高温高压釜模拟石油井动态高温高压环境,研究了G105钢钻杆在不同浓度NaCl溶液中的高温高压腐蚀行为,采用极化曲线研究了其常温电化学腐蚀行为。采用体式显微镜和扫描电镜(SEM)观察腐蚀产物膜形貌;采用X射线能谱分析仪(EDS)分析了腐蚀产物膜成分。结果表明:G105钢钻杆在含Cl-介质中发生孔蚀,严重时会出现明显的蚀坑;随着Cl-浓度的增加,钻杆的腐蚀速率和程度增加。  相似文献   

10.
采用化学成分分析、金相显微镜、扫描电子显微镜、X射线能谱分析仪和电化学方法等手段对西部某油田油管腐蚀失效件进行了检测分析。结果表明,井下油管管体外壁发生严重点蚀主要因素是酸化过程残酸反排阶段的残酸液和地层水中的高浓度氯离子,同时CO2和H2S也促进了腐蚀发生。油管管体相对于结箍发生了更严重的点蚀,主要是因为油管管体和结箍在材质、金相组织以及耐蚀性上均存在差异。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号