首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports about the analysis and optimization of micro-geometry parameters (i.e. total profile deviation ‘Fa’ and accumulated pitch deviation ‘Fp’) of the wire electric discharge machined (WEDMed) fine-pitch miniature spur gears made of brass. Effects of four WEDM process parameters namely voltage, pulse-on time, pulse-off time and wire feed rate on the micro-geometry of the miniature gears were analyzed by conducting the experiments designed using Box–Behnken approach of response surface methodology (RSM). Analysis of variance study found all four input parameters significant. Larger deviations in profile and pitch were observed with higher values of the voltage and pulse-on time, and with lower values of wire feed rate and pulse-off time. Multi-performance optimization of WEDM parameters was done using the desirability analysis to minimize profile deviation and pitch deviation simultaneously. The values of Fa and Fp of the gear obtained by the confirmation experiment conducted at the optimized WEDM parameters were as 11.5 μm and 9.1 μm respectively. These values categorize the WEDMed gear having DIN quality number as 7 and 5 respectively for profile and pitch which are better than those obtained by the conventional miniature gear manufacturing processes.  相似文献   

2.
Unconventional machining like wire electric discharge machining/cutting (WEDM/WEDC) seems to be a better choice for machining/cutting the metal matrix composites (MMCs) because it offers easy control and has the capability of machining intricate complex shapes. But wire breakage in the WEDM/WEDC process decreases the machining accuracy and the quality of the machined surface. This paper describes the effect of four input process parameters (i.e., servo voltage, pulse-on time, pulse-off time, and wire feed rate) on wire breakage frequency and the microstructure of the cut surface during WEDC of SiCp/6061 Al MMC. An optimum range of input parameters has been bracketed as the outcome of this work for determining the effects of input process parameters on the average cutting speed, material removal rate, and surface roughness during WEDC of SiCp/6061 Al MMC. This range of input parameters can also be used for carrying out further research to develop the models for WEDC of SiCp/6061 Al MMC and to optimize the WEDC parameters for smooth cutting.  相似文献   

3.
The near-dry wire-cut electrical discharge machining (WEDM) process is an environment-friendly manufacturing process, in which there is no harmful effect to the operators. The authors focus on the non-polluting ways to cut the materials and to meet the technical requirements like high material removal rate (MRR) and low surface roughness (Ra). In the near-dry WEDM, the finite discrete periodic series sparks between the wire electrode and conducting work material separated by minimum quantity of deionized water mixed with compressed air (air-mist) as a dielectric medium. In the present research, parametric analysis of the process has been performed with the molybdenum wire tool and high speed steel (HSS-M2) work piece. Experiments have been performed using air-mist as the dielectric medium to study the impact of gap voltage, pulse-on time, pulse-off time, air-mist pressure and discharge current on the MRR and Ra using the mixed orthogonal (L18) array-Taguchi method. Taguchi based analysis of variance test was performed to identify the significant parameters. The gap voltage, pulse-on time, discharge current and air-mist pressure were found to have momentous effects on MRR and Ra. The best regression models for MRR and Ra have been developed by regression analysis. The optimal rough and finish cutting parameters have been predicted by Pareto-front using the multi-objective evolutionary algorithm (MOEA).  相似文献   

4.
In this investigation, the effect of wire electrical discharge machining (WEDM) parameters such as pulse-on time (T ON), pulse-off time (T OFF), gap voltage (V) and wire feed (F) on material removal rate (MRR) and surface roughness (R a) in metal matrix composites (MMCs) consisting of aluminium alloy (Al6063) and silicon carbide (SiCp) is discussed. The Al6063 is reinforced with SiCp in the form of particles with 5%, 10% and 15% volume fractions. The experiments are carried out as per design of experiments approach using L9 orthogonal array. The results were analysed using analysis of variance and response graphs. The results are also compared with the results obtained for unreinforced Al6063. From this study, it is found that different combinations of WEDM process parameters are required to achieve higher MRR and lower R a for Al6063 and composites. Generally, it is found that the increase in volume percentage of SiC resulted in decreased MRR and increased R a. Regression equations are developed based on the experimental data for the prediction of output parameters for Al6063 and composites. The results from this study will be useful for manufacturing engineers to select appropriate WEDM process parameters to machine MMCs of Al6063 reinforced with SiCp at various proportions.  相似文献   

5.
Wire electrical discharge machining (WEDM) is a commonly used process in manufacturing industries to machine electrically conductive materials with complex shapes and varying hardness. The performance of any machining process is based on right selection of input variables. The selection of optimal parameters in WEDM is a difficult task as it is a highly stochastic process in nature. The present work deals with the development of empirical relationships for the output responses of kerf (cutting width) and wire wear ratio considering pulse-on time, pulse-off time, wire tension, dielectric flow rate, and wire feed as the input variables. Response surface methodology is used to find the quantitative relations. Subsequently, the developed mathematical models are used for optimization. A recently developed global optimization technique, harmony search algorithm, is applied to find the optimal set of input control variables.  相似文献   

6.
In this paper, the effects and the optimization of cutting parameters on surface roughness (Ra) and material removal rate (MRR) in the wire electrical discharge machining (WEDM) of high hardness tool steel YG15 are analyzed. In the WEDM process, the key process parameters, such as pulse-on time, pulse-off time, power, cutting feed rate, wire tension, wire speed, and water pressure, are optimized. Experimental data were initially collected based on the Taguchi method of experimental design, which are $L_{18}\left (2^1\times 3^5\right )$ and $L_{18}\left (2^1\times 3^4\right )$ Taguchi standard orthogonal array on rough and finish cutting experiments, respectively. The level of importance of the cutting parameters on the Ra and MRR was determined on both finish and rough cutting by using statistical analyses; average gap voltage is discussed in order to balance cutting efficiency and stability on both finish and rough cutting. In addition, comparative analysis of finish and rough cutting is drawn to analyze the difference between rough cutting and finish cutting. Then, regression models and signal-to-noise ratio are used to obtain the optimum cutting parameter combination. Finally, the results present the optimized MRR and Ra of the rough and finish process, respectively, and confirm the efficiency and abilities of the model.  相似文献   

7.
In this paper, the effects and the optimization of machining parameters on surface roughness and roundness in the turning wire electrical discharge machining (TWEDM) process are investigated. In the TWEDM process, a new machining parameter, such as rotational speed, is introduced, which changes the normal machining conditions in conventional wire electrical discharge machining (WEDM). By the Taguchi method, a complete realization of the process parameters and their effects were achieved. The Taguchi method has not been used in TWEDM by other researchers. The surface roughness and roundness were measured to verify the process. In addition, the open-circuit voltage, pulse-off time, open arc voltage, and the inter-electrode gap size, which are replaced by power, time-off, voltage, and servo, respectively, and also wire tension, wire speed, and rotational speed were chosen for evaluation by the Taguchi method. An L18 (21?×?37) Taguchi standard orthogonal array was chosen for the design of experiments. The level of importance of the machining parameters on the surface roughness and roundness was determined by using analysis of variance (ANOVA). The optimum machining parameters combination was obtained by using the analysis of signal-to-noise (S/N) ratios. The variation of surface roughness and roundness with machining parameters was mathematically modeled by using the regression analysis method. Finally, experimentation was carried out to identify the effectiveness of the proposed method. The presented model is also verified by a set of verification tests.  相似文献   

8.
Aluminium metal matrix composites (MMCs) reinforced with silicon carbide particulate (SiCp) find several applications due to their improved mechanical properties over the conventional metals for a wide variety of aerospace and automotive applications. However, the presence of discontinuously distributed hard ceramic in the MMCs made them as difficult-to-cut materials for conventional machining methods. The wire electrical discharge machining (WEDM), as a widely adopted non-traditional machining method for difficult-to-cut precision components, found an appropriate metal removal process for MMCs to enhance quality of cut within the stipulated cost. While machining the advanced materials like MMCs, a clear understanding into the machining performance of the process for its control variables could make the process uncomplicated and economical. In light of the growing industrial need of making high performance-low cost components, the investigation aimed to explore the machining performance characteristics of SiCp reinforced Al7075 matrix composites (Al7075/SiCp) during WEDM. While conducting the machining experiments, surface roughness, metal removal rate, and wire wear ratio are considered the responses to evaluate the WEDM performance. Response surface methodology is used to develop the empirical models for these WEDM responses. SiC particulate size and volume percentages are considered the process variables along with pulse-on time, pulse-off time, and wire tension. Analysis of variance (ANOVA) is used to check the adequacy of the developed models. Since the machining responses are conflicting in nature, the problem is formulated as a multi-objective optimization problem and is solved using the Non-dominated Sorting Genetic Algorithm-II to obtain the set of Pareto-optimal solutions. The derived optimal process responses are confirmed by the experimental validation tests, and the results are analyzed by SEM.  相似文献   

9.
This paper reports about investigations on some important aspects of surface integrity of the miniature spur gears manufactured by wire electrical discharge machining (WEDM) process. The investigations included study of variation of form errors (deviations in profile and lead) and surface roughness with discharge energy parameters, i.e., voltage and/or pulse-on time for the miniature gears. The effect of WEDM process on flank surface topography, bearing length parameters, microstructure, and microhardness for the best quality miniature gear were also studied. The manufactured miniature gears were of external spur type having 9.8 mm as outside diameter, 4.9-mm thickness, 0.7 mm as module, 12 teeth, and were made of brass. It was found that combination of low discharge energy parameters resulted in better form accuracy, surface finish, and microstructure ensuring enhanced service life and better functional characteristics of the WEDMed miniature gears. The best quality miniature gear had form errors (i.e., lead and profile deviations) as low as 5.4 μm, very little variation in the actual surface topography from the theoretical one, an average surface roughness of 1 μm, and maximum surface roughness within the entire evaluation length as 6.4 μm, showed consistent surface finish measured by other surface roughness parameters, good bearing area curve, and crack-free gear tooth surface without significant alteration in microhardness. Results of the present work demonstrate the superiority of the WEDM process over the conventional miniature gear manufacturing processes.  相似文献   

10.
Wire-cut Electro Discharge Machining (WEDM) is a special form of conventional EDM process in which the electrode is a continuously moving conductive wire. The present study aims at determining parametric influence and optimum process parameters of Wire-EDM using Taguchi's technique and a Genetic algorithm. The variation of the performance parameters with machining parameters was mathematically modeled by Regression analysis method. The objective functions are defined as Dimensional Error (DE), Surface Roughness (SR) and Volumetric Material Removal Rate (VMRR). Experiments were designed as per Taguchi's L16 Orthogonal Array (OA) wherein Pulse-on duration, Current, Pulse-off duration, Bed-speed and Flushing rate have been considered as the important input parameters. The matrix experiments were conducted for the material Hot Die Steel (HDS) having the thickness of 40 mm. The Heat Affected Zone (HAZ) characteristics of the eroded materials were assessed by Scanning Electron Microscope (SEM) and the microhardness of the material was tested using Vickers microhardness tester. The results of the study reveal that among the machining parameters, it is preferable to go for smaller pulse-off duration for achieving overall good performance. Regarding pulse-on duration, higher values are recommended for error constrained machining with higher MRR and constrained/limited values for attaining good surface texture. Smaller current is suggested for better surface finish/texture control, medium range for error control and high value for MRR. Finally, the validation exercise was performed with the optimum levels of the process parameters. The results confirm the efficiency of the approach employed for optimization of process parameters in this study.  相似文献   

11.
The performance of the wire electrodischarge machining (WEDM) machining process largely depends upon the selection of the appropriate machining variables. Optimization is one of the techniques used in manufacturing sectors to arrive for the best manufacturing conditions, which are essential for industries toward manufacturing of quality products at lowest cost. As there are many process variables involved in the WEDM machining process, it is difficult to choose a proper combination of these process variables in order to maximize material removal rate and to minimize tool wear and surface roughness. The objective of the this work is to investigate the effects of process variables like pulse on time, pulse off time, peak current, servo voltage, and wire feed on material removal rate (MRR), surface roughness (SR), gap voltage, gap current, and cutting rate in the WEDM machining process. The experiment has been done using Taguchi’s orthogonal array L27 (35). Each experiment was conducted under different conditions of input parameters and statistically evaluated the experimental data by analysis of variance (ANOVA) using MINITAB and Design Expert tools. The present work also aims to develop mathematical models for correlating the inter-relationships of various WEDM machining parameters and performance parameters of machining on AISI D2 steel material using response surface methodology (RSM).The significant machining parameters and the optimal combination levels of machining parameters associated with performance parameters were also drawn. The observed optimal process parameter settings based on composite desirability (61.4 %) are pulse on time 112.66 μs, pulse off time 45 μs, spark gap voltage 46.95 V, wire feed 2 mm/min, peak current of 99.99 A for achieving maximum MRR, gap current, gap voltage, cutting rate, and minimum SR; finally, the results were experimentally verified.  相似文献   

12.
TiNiCu alloy belongs to new class of shape memory alloy (SMA), which exhibits superior properties like shape memory effect, super elasticity and reversible martensitic transformation phase and thus find broad applications in actuators, micro tools and stents in biomedical components. Even though, SMA demonstrates outstanding property profile, traditional machining of SMAs is fairly complex and hence non-traditional machining like wire electric discharge machining (WEDM) has been performed. Hence, there is a need to investigate the WEDM performance characteristics of shape memory alloys due to excellent property profile and potential applications. In the present investigation, various machining characteristics like material removal rate (MRR), surface roughness, surface topography and metallographic changes have been studied and the influence of wire material on TiNiCu alloy machining characteristics has also been evaluated through ANOVA. Ti50Ni50−xCux=10, 20 was prepared by vacuum arc melting process. The proposed alloy as-cast material exhibits austenite property (B2 phase) and having higher hardness when compared to TiNi alloy. The investigation on WEDM of Ti50Ni50−xCux alloy reveals that the machining parameters such as servo voltage, pulse on time and pulse off time are the most significant parameters affecting MRR as well as surface roughness using both brass and zinc coated brass wires. However, machining with zinc coated brass wire yields reduced surface roughness and better MRR and also produces less surface defects on the machined surface of Ti50Ni50−xCux alloys.  相似文献   

13.
Mixing powder into dielectric fluid in electrical discharge machining (PMEDM) is a very interesting technological solution in current research. This method has the highest efficiency in simultaneously improving the productivity and quality of a machined surface. In this study, material removal rate (MRR), surface roughness (SR), and the micro-hardness of a machined surface (HV) in electrical discharge machining of die steels in dielectric fluid with mixed powder were optimized simultaneously using the Taguchi–TOPSIS method. The process parameters used in the study included workpiece materials (SKD61, SKD11, SKT4), electrode materials (copper, graphite), electrode polarity, pulse-on time, pulse-off time, current, and titanium powder concentration. Some interaction pairs among the process parameters were also used to evaluate the effect on the optimal results. The results showed that MRR and HV increased and SR decreased when Ti powder was mixed into the dielectric fluid in EDM. Factors such as powder concentration, electrode material, electrode polarity, and pulse-off time were found to be significant in the optimal indicator (C*) and the S/N ratio of C*. Powder concentration was also found to be the most significant factor; its contribution to C* was 50.90%, and S/N ratio of C* was 51.46%. The interactions of the powder concentration and certain process parameters for C* were found to be largest. The optimum quality characteristics were MRR?=?38.79 mm3/min, SR?=?2.71 μm, and HV?=?771 HV. The optimal parameters were verified by experiment, and its accuracy was good (max error ≈13.38%). The finished machined surface under optimum conditions was also analyzed. The machined surface quality under optimum conditions was good. In addition, the results of the study showed the TOPSIS limitations of TOPSIS in a multi-criteria optimization problem.  相似文献   

14.
The selection of optimum machining conditions, during wire electric discharge machining process, is of great concern in manufacturing industries these days. The increasing quality demands, at higher productivity levels, require the wire electric discharge machining process to be executed more efficiently. Specifically, the material removal rate needs to be maximized while controlling the surface quality. Despite extensive research on wire electric discharge machining process, determining the desirable operating conditions in industrial setting still relies on the skill of the operators and trial-and-error methods. In the present work, an attempt has been made to optimize the machining conditions for maximum material removal rate and maximum surface finish based on multi-objective genetic algorithm. Experiments, based on Taguchi’s parameter design, were carried out to study the effect of various parameters, viz. pulse peak current, pulse-on time, pulse-off time, wire feed, wire tension and flushing pressure, on the material removal rate and surface finish. It has been observed that a combination of factors for optimization of each performance measure is different. So, mathematical models were developed between machining parameters and responses like metal removal rate and surface finish by using nonlinear regression analysis. These mathematical models were then optimized by using multi-objective optimisation technique based on Non-dominated Sorting Genetic Algorithm-II to obtain a Pareto-optimal solution set.  相似文献   

15.
Electro-discharge machining (EDM) has grown tremendously over the last few decades. Due to its extensive capabilities, this technique has been increasingly adapted to new industrial applications within the field of aerospace, medical, die and mould production, precision tooling, etc. The novelty of the research presented in this paper lies in solving an inversion model, based on the least squares theory, which involves establishing the values of the EDM input parameters (peak current level, pulse-on time and pulse-off time) to ensure the simultaneous fulfilment of material removal rate (MRR), electrode wear ratio (EWR) and surface roughness (SR). The inversion model was constructed from a set of experiments and the equations formulated in the forward model described in the first part of this paper. In the forward model, the well-known ANOVA and regression models were used to predict the EDM output performance characteristics, such as MRR, EWR and SR in the EDM process for AISI 1045 steel with respect to a set of EDM input parameters.  相似文献   

16.
17.
The effects of electrical discharge machining (EDM) parameters on drilled-hole quality such as taper and surface finish are evaluated. Microwave-sintered magnesium nano composites (reinforced with 0.8 and 1.2 wt.% of nano alumina) are used as work materials. Experiments were conducted using Taguchi methodology to ascertain the effects of EDM process parameter. The process parameters such as pulse-on time, pulse-off time, voltage gap, and servo speed were optimized to get better surface finish and reduced taper. ANOVA analyses were carried out to identify the significant factors that affect the hole accuracy and the surface roughness. Confirmation tests were performed on the predicted optimum process parameters. Pulse-on time and the servo speed are identified as major response variables. Micro structural changes and the effects of nano particle reinforcement in the drilled hole were studied through SEM micrographs.  相似文献   

18.
In this paper, an effective approach, Taguchi grey relational analysis, has been applied to experimental results of wire cut electrical discharge machining (WEDM) on Inconel 825 with consideration of multiple response measures. The approach combines the orthogonal array design of experiment with grey relational analysis. The main objective of this study is to obtain improved material removal rate, surface roughness, and spark gap. Grey relational theory is adopted to determine the best process parameters that optimize the response measures. The experiment has been done by using Taguchi’s orthogonal array L36 (21?×?37). Each experiment was conducted under different conditions of input parameters. The response table and the grey relational grade for each level of the machining parameters have been established. From 36 experiments, the best combination of parameters was found. The experimental results confirm that the proposed method in this study effectively improves the machining performance of WEDM process.  相似文献   

19.
Abstract

Unconventional wire electrical discharge machining technology is an indispensable part of the production of many industrial devices. Material separation takes place at very high local temperatures, and therefore, some undesirable surface and sub-surface defects are formed. Not only the occurrence of defects but also the quality of the machined surface is very important for the end customer, so it is necessary to monitor it carefully. For this reason, a 33-round planned experiment was carried out for the study of the impact of the machine parameters setup on the topography and morphology of the steel Creusabro 4800. (This material has not yet been the subject of any similar publication.) Metallographic preparations of all samples that allowed the study of subsurface defects using light and electron microscopy were produced. In order to investigate changes in the chemical composition of the surface and subsurface layers of the effects of WEDM machining, a complex chemical composition analysis was performed. A significant effect of the machine parameters setup on the occurrence of subsurface defects was demonstrated and the presence of burned cavities could be completely eliminated with machine parameters setup: gap voltage?=?60?V, pulse on time?=?8?μs, pulse off time?=?40?μs, wire speed?=?12?m?min?1 and discharge current?=?25?A.  相似文献   

20.
This study proposes a novel pulse voltage configuration, auxiliary-pulse voltage, for wire electrical discharge machining (WEDM) of polycrystalline silicon (polysilicon) used in solar cell production. It is developed with the objectives of reducing material waste due to the large kerf loss as well as achieving greater efficiency and better quality compared with conventional machining approaches. Experimental results show that compared with conventional-pulse voltage supply, the auxiliary-pulse voltage mode can avoid delay in electrical discharge during pulse-on time. Enhanced frequency of effective discharge for machining would increase machining speed, which would in turn reduce machining groove width, and obtain better surface roughness. In addition, parameters of significant influence on machining characteristics were examined with the Taguchi method, and the optimal combination levels of machining parameters were determined. In sum, our findings reveal that WEDM with auxiliary-pulse voltage supply is an effective approach to machining polysilicon with good quality and high efficiency achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号