首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The non-isothermal thermogravimetric method was used to study the thermal decomposition of \(\hbox {KClO}_{4}, \hbox {KNO}_{3}\) , and \(\hbox {NaNO}_{3}\) at heating rates of (5, 10, 15, and 20)  \(\hbox {K}\cdot \hbox {min}^{-1}\) . The activation energy of thermal decomposition reactions was computed by isoconversional methods of Ozawa–Flynn–Wall, Kissinger–Akahiro–Sunose, and Friedman equations. Also, the kinetic triplet of the thermal decomposition of salts was determined by the model-fitting method of the modified Coats–Redfern equation. The activation energies of \(\hbox {KClO}_{4}, \hbox {KNO}_{3}\) , and \(\hbox {NaNO}_{3}\) of (293 to 307, 160 to 209, and 192 to 245)  \(\hbox {kJ}\cdot \hbox {mol}^{-1}\) , respectively, are obtained by non–isothermal isoconversional methods. The modified Coats and Redfern method showed that the most probable mechanism functions \(g(\alpha )\) of \([-\hbox {ln}(1 - \alpha )]^{1/3}\) (model A3: Arami–Erofeev equation) and \((1 - \alpha )^{-1}- 1\) (model F2: second order) can be used to predict the decomposition mechanisms of \(\hbox {KClO}_{4}\) , \(\hbox {KNO}_{3}\) , and \(\hbox {NaNO}_{3}\) , respectively.  相似文献   

2.
We report on the plasma-assisted molecular-beam epitaxy of semipolar $\hbox{AlN}(11\bar{2}2)$ and GaN( $11\bar{2}2$ ) films on $(1\bar{1}00)$ m-plane sapphire. AlN deposited on m-sapphire settles into two main crystalline orientation domains, $\hbox{AlN}(11\bar{2}2)$ and $\hbox{AlN}(10\bar{1}0),$ whose ratio depends on the III/V ratio. Growth under moderate nitrogen-rich conditions enables to isolate the $(11\bar{2}2)$ orientation. The in-plane epitaxial relationships of $\hbox{AlN}(11\bar{2}2)$ on m-plane sapphire are $[11\bar{2}\bar{3}]_{\rm AlN} \vert \vert [0001]_{\rm sapphire}$ and $[1\bar{1}00]_{\rm AlN} \vert \vert [11\bar{2}0]_{\rm sapphire}.$ GaN deposited directly on m-sapphire results in ( $11\bar{2}2$ )-oriented layers with ( $10\bar{1}\bar{3}$ )-oriented inclusions. A ~100 nm-thick AlN( $11\bar{2}2$ ) buffer imposes the ( $11\bar{2}2$ )-orientation for the GaN layer grown on top. By studying the Ga-desorption on GaN( $11\bar{2}2$ ), we conclude that these optimal growth conditions corresponds to a Ga excess of one monolayer on the GaN( $11\bar{2}2$ ) surface.  相似文献   

3.
$\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}$ Bi 5 Ti 3 FeO 15 magnetoelectric (ME) ceramics have been synthesized and investigated. The ME effect can be described as an induced electric polarization under an external magnetic field or an induced magnetization under an external electric field. The materials in the ME effect are called ME materials, and they are considered to be a kind of new promising materials for sensors, processors, actuators, and memory systems. Multiferroics, the materials in which both ferromagnetism and ferroelectricity can coexist, are the prospective candidates which can potentially host the gigantic ME effect. $\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}$ Bi 5 Ti 3 FeO 15 , an Aurivillius compound, was synthesized by sintering a mixture of $\mathrm{Bi}_{2}\mathrm{O}_{3}, \mathrm{Fe}_{2}\mathrm{O}_{3}$ Bi 2 O 3 , Fe 2 O 3 , and $\mathrm{TiO}_{2}$ TiO 2 oxides. The precursor materials were prepared in a high-energy attritorial mill for (1, 5, and 10) h. The orthorhombic $\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}$ Bi 5 Ti 3 FeO 15 ceramics were obtained by a solid-state reaction process at 1313 K. The ME voltage coefficient ( $\alpha _\mathrm{ME}$ α ME ) was measured using the dynamic lock-in method. The highest ME voltage coefficient ( $\alpha _\mathrm{ME} = 8.28\,\text{ mV }{\cdot }\text{ cm }^{-1}{\cdot }\text{ Oe }^{-1})$ α ME = 8.28 mV · cm ? 1 · Oe ? 1 ) is obtained for the sample milled for 1 h at $H_\mathrm{DC }= 4$ H DC = 4  Oe (1 Oe = 79.58  $\text{ A }{\cdot }\text{ m }^{-1})$ A · m ? 1 ) .  相似文献   

4.
Glass-transition kinetics of $\mathrm{Se}_{80}\mathrm{In}_{20-\mathrm{x}}\mathrm{Pb}_{\mathrm{x}}$ ( $x =$ 0, 5, 10, and 15) chalcogenide glasses have been carried out at different heating rates by using differential scanning calorimeter (DSC) under the non-isothermal condition. The glass-transition temperature $T_{\mathrm{g}}$ and peak glass-transition temperature $T_{\mathrm{pg}}$ have been determined from DSC thermograms. The reduced glass temperature $T_{\mathrm{rg}}$ , total relaxation time $\tau _{T_{g}}$ thermal-stability parameters $K^{l}$ and $S$ , the activation energy of glass transition $E_{\mathrm{g}}$ , the fragility index $F_{\mathrm{i}}$ , and the average coordination number $\langle Z\rangle $ have been calculated on the basis of the experimental results. The temperature differences $(T_{\mathrm{c}}-T_{\mathrm{g}}), K_{\mathrm{gl}}, K^{l}, S$ , and $E_{\mathrm{g}}$ are found to be maxima for $\mathrm{Se}_{80}\mathrm{In}_{10}\mathrm{Pb}_{10}$ glass. This indicates that $\mathrm{Se}_{80}\mathrm{In}_{10}\mathrm{Pb}_{10}$ glass has the highest thermal stability and glass-forming ability in the investigated compositional range. These results could be explained on the basis of modification of the chemical bond formation due to incorporation of Pb in the Se–In glassy matrix.  相似文献   

5.
Based on the extended three-parameter corresponding-states principle and the most reliable experimental data of $n$ -alkanes, a generalized fundamental equation of state for technical calculations has been developed. This equation is in the form of the reduced Helmholtz free energy and takes the reduced density, reduced temperature, and acentric factor as variables. The proposed equation satisfies the critical conditions and Maxwell rule, shows correct behavior for the ideal curves and for the derivatives of the thermodynamic potentials, and allows the calculation of all thermodynamic properties including phase equilibrium of $n$ -alkanes from $n$ -pentane $(\hbox {C}_{5})$ to $n$ -pentacontane $(\hbox {C}_{50})$ over a temperature range from the triple point to 700 K with pressures up to 100 MPa. The new equation differs from the previous generalized equations of other authors by a wider range of variation of the acentric factor $\omega =0.25$ to 1.8, and by more accurately predicting thermal properties.  相似文献   

6.
A commercially available calorimeter has been used to investigate the specific heat of a high-quality K $_{0.71}$ Na $_{0.29}$ Fe $_2$ As $_2$ single crystal. The addenda heat capacity of the calorimeter is determined in the temperature range $0.02 \, \mathrm{K} \le T \le 0.54 \, \mathrm{K}$ . The data of the K $_{0.71}$ Na $_{0.29}$ Fe $_2$ As $_2$ crystal imply the presence of a large $T^2$ contribution to the specific heat which gives evidence of $d$ -wave order parameter symmetry in the superconducting state. To improve the measurements, a novel design for a calorimeter with a paramagnetic temperature sensor is presented. It promises a temperature resolution of $\Delta T \approx 0.1 \, \mathrm{\mu K}$ and an addenda heat capacity less than $200 \, \mathrm{pJ/K}$ at $ T < 100 \, \mathrm{mK}$ .  相似文献   

7.
Five types of magnetic nanofluids, based on \(\hbox {Fe}_{3}\hbox {O}_{4}\) nanoparticles with water as the carrier liquid, were investigated by using the two photopyroelectric (PPE) detection configurations (back (BPPE) and front (FPPE)), together with the thermal-wave resonator cavity (TWRC) technique as the scanning procedure. The difference between the nanofluids was the type of surfactant: double layers of lauric (LA–LA), oleic (OA–OA), and miristic (MA–MA) acids and also double layers of lauric–miristic (LA–MA) and palmitic-oleic (PA–OA) fatty acids were used. In both detection configurations, the information was contained in the phase of the PPE signal. The thermal diffusivity of nanofluids was obtained in the BPPE configuration, from the scan of the phase of the signal as a function of the liquid’s thickness. Using the same scanning procedure in the FPPE configuration, the thermal effusivity was directly measured. The influence of a 0.12 kG magnetic field on the thermal effusivity and thermal diffusivity was also investigated. Because of different surfactants, the thermal effusivity of the investigated nanofluids ranges from \(1530\,\hbox {W}\cdot \hbox {s}^{1/2} \cdot \hbox { m}^{-2}\cdot \hbox { K}^{-1}\) to \(1790\,\hbox { W}\cdot \hbox {s}^{1/2}\cdot \hbox { m}^{-2}\cdot \hbox { K}^{-1}\) , and the thermal diffusivity, from \(14.54~\times ~10^{-8}\,\hbox { m}^{2}\cdot \hbox { s}^{-1}\) to \(14.79~\times ~10^{-8}\,\hbox { m}^{2}\cdot \hbox { s}^{-1}\) . The magnetic field has practically no influence on the thermal effusivity, and produces a maximum increase of the thermal diffusivity (LA–LA surfactant) of about 4 %.  相似文献   

8.
We report the results of directional point-contact measurements in Mg(B $_{1-x}$ C $_{x})_{2}$ single crystals. The amplitudes of the gaps, $\Delta_{\pi}$ and $\Delta_{\sigma}$ , were determined for each C content by fitting the experimental low-temperature normalized conductance curves of our “soft” point contacts with the BTK model generalized to the two-band case. We found that, on increasing the carbon content, $\Delta_{\sigma}$ decreases almost linearly with $T_{c}$ and $\Delta_{\pi}$ slightly increases until, at $x=0.132$ (where $T_{c}=19$ K), they assume the same value $\Delta =3.2 \pm 0.9$ meV. This result is confirmed by the temperature and magnetic-field dependence of the conductance curves at this C content, which do not show any evidence of two distinct gap values. In particular, the Δ versus T curve follows very well a standard BCS curve, with a gap ratio $2\Delta /k_{B} T_{c}=3.9$ . These experimental findings are compared to the theoretical predictions of the two-band model in the Eliashberg formulation.  相似文献   

9.
The magnetocaloric effect in half-metallic double perovskite Sr $_{0.4}$ Ba $_{1.6-x}$ Sr $_{x}$ FeMoO $_{6}$ (x = 0, 0.2, 0.4, 0.6) was investigated. It is shown that Sr $_{0.4}$ Ba $_{1.6-x}$ Sr $_{x}$ FeMoO $_{6}$ exhibits a magnetic entropy change of 0.078 J $\,\cdot \, $ kg $^{-1}\,\cdot \, $ K $^{-1}$ upon 0.2 T magnetic field variation. Through these results, polycrystalline samples of Sr $_{0.4}$ Ba $_{1.6-x}$ Sr $_{x}$ FeMoO $_{6 }$ have some potential applications for magnetic refrigerants over a wide-temperature range, including room temperature.  相似文献   

10.
DuPont’s perfluoropolyether oil Krytox $^{\textregistered }$ GPL 102 is a promising candidate for the high-temperature, high-pressure Deepwater viscosity standard (DVS). The preferred DVS is a thermally stable liquid that exhibits a viscosity of roughly 20  $\hbox {mPa} \cdot \hbox {s}$ at 533 K and 241 MPa; a viscosity value representative of light oils found in ultra-deep formations beneath the deep waters of the Gulf of Mexico. A windowed rolling-ball viscometer designed by our team is used to determine the Krytox $^{\textregistered }$ GPL 102 viscosity at pressures to 245 MPa and temperatures of 311 K, 372 K, and 533 K. At 533 K and 243 MPa, the Krytox $^{\textregistered }$ GPL 102 viscosity is $(27.2 \pm 1.3)\,\hbox {mPa} \cdot \hbox {s}$ . The rolling-ball viscometer viscosity results for Krytox $^{\textregistered }$ GPL 102 are correlated with an empirical 10-parameter surface fitting function that yields an MAPD of 3.9 %. A Couette rheometer is also used to measure the Krytox $^{\textregistered }$ GPL 102 viscosity, yielding a value of $(26.2 \pm 1)\,\hbox {mPa} \cdot \hbox {s}$ at 533 K and 241 MPa. The results of this exploratory study suggest that Krytox $^{\textregistered }\, \hbox {GPL}$ 102 is a promising candidate for the DVS, primarily because this fluoroether oil is thermally stable and exhibits a viscosity closer to the targeted value of 20 mPa $\cdot $ s at 533 K and 241 MPa than any other fluid reported to date. Nonetheless, further studies must be conducted by other researcher groups using various types of viscometers and rheometers on samples of Krytox GPL $^{\textregistered }$ 102 from the same lot to further establish the properties of Krytox GPL $^{\textregistered }$ 102.  相似文献   

11.
Based on a phenomenological model, the electrocaloric effect (ECE) accompanied with the ferroelectric-to-paraelectric phase transition in a PbZr $_{0.95}$ 0.95 Ti $_{0.05}$ 0.05 O $_{3}$ 3 thin film was investigated. The extracted data reveal many features of the ECE such as electrocaloric entropy changes, heat capacity changes, and temperature changes as functions of temperature due to different electric fields shifts. From the behavior of the PbZr $_{0.95}$ 0.95 Ti $_{0.05}$ 0.05 O $_{3}$ 3 thin film in phase transitions, it leads to a large change of heat capacity of 105.94 J  ${\cdot }\,$ · kg ${^{-1}}\,{\cdot }\,{^{\circ }}$ ? 1 · ° C, a temperature change of 22.44 K, and a relative cooling power of 1469 J  ${\cdot }$ ·  kg $^{-1}$ ? 1 .  相似文献   

12.
Detecting ammonia traces is relevant in health, manufacturing, and security areas, among others. As ammonia presents a strong absorption band (the $\nu _{2}$ mode) around 10  $\upmu $ m, some of the physical properties which may influence its detection by means of pulsed photoacoustic (PA) spectroscopy with a TEA $\text{ CO}_{2}$ laser have been studied. The characteristics of the ammonia molecule and the laser intensity may result in a nonlinear dependence of the PA signal amplitude on the laser fluence. Ammonia absorption can be described as a simple two-level system with power broadening. As $\text{ NH}_{3}$ is a polar molecule, it strongly undergoes adsorption phenomena in contact with different surfaces. Therefore, physical adsorption–desorption at the cell’s wall is studied. A theoretical model, based on Langmuir’s assumptions, fits well to the experimental results with stainless steel. Related to these studies, measurements led to the conclusion that, at the used fluenced values, dissociation by multiphotonic absorption at the 10P(32) laser line may be discarded. A calibration of the system was performed, and a detection limit around 190 ppb (at 224 $\text{ mJ}\cdot \text{ cm}^{-2}$ ) was achieved.  相似文献   

13.
The densities of solid and liquid Cu \(_{48}\) Zr \(_{52}\) and the viscosity of the liquid were measured in a containerless electrostatic levitation system using optical techniques. The measured density of the liquid at the liquidus temperature (1223 K) is (7.02 \(\pm \) 0.01) g \(\cdot \) cm \(^{-3}\) and the density of the solid extrapolated to that temperature is (7.15 \(\pm \) 0.01) g \(\cdot \) cm \(^{-3}\) . The thermal expansion coefficients measured at 1223 K are (6.4 \(\pm \) 0.1) \(\,\times \,10^{-5}\) K \(^{-1}\) in the liquid phase and (3.5 \(\pm \) 0.3) \(\,\times \,10^{-5}\) K \(^{-1}\) in the solid phase. The viscosity of the liquid, measured with the oscillating drop technique, is of the form \(A\exp \left[ \left( {{E}_{0}}+{{E}_{1}}\left( 1/T-1/{{T}_{0}} \right) \right) \times \left( 1/T-1/{{T}_{0}} \right) \right] \) , where \({{T}_{0}}=1223\) K, \(A= (0.0254 \pm 0.0004)\) Pa \(\cdot \) s, \({{E}_{0}}\) =  (8.43 \(\pm \) 0.26) \(\,\times \,10^3\) K and \({{E}_{1}}\) =  (1.7 \(\pm \) 0.2) \(\,\times 10^7\) K \(^{2}\) .  相似文献   

14.
The structural, elastic, and thermodynamic properties of the cubic anti-perovskite $\hbox {RBRh}_{3}$ (R = Sm, Eu, Gd, and Tb) compounds have been investigated using first principles full-potential augmented-plane wave plus local orbitals (FP-APW+lo) method with the generalized gradient approximation. The ground-state quantities such as the lattice parameter, bulk modulus, and its pressure derivative, as well as elastic constants are estimated. Computed equilibrium lattice constants agree well with the available experimental data. The full set of first-order elastic constants and their pressure dependence, which have not been calculated or measured yet, have been determined. The elastic moduli increase linearly with increasing pressure and satisfy the generalized elastic stability criteria for cubic crystals under hydrostatic pressure. The shear modulus, Young’s modulus, and Poisson’s ratio are calculated for ideal polycrystalline $\hbox {RBRh}_{3}$ aggregates. The Debye temperature is estimated from the average sound velocity. From the elastic parameter behavior, it is inferred that cubic anti-perovskites $\hbox {RBRh}_{3}$ are ductile in nature and that the bonding is predominantly of an ionic nature. Following the quasi-harmonic Debye model, the temperature effect on the lattice constant, bulk modulus, heat capacity, and Debye temperature is calculated reflecting the anharmonic phonon effects.  相似文献   

15.
It can be noted that the germanate glass–ceramic is a functional material with excellent thermal stability which can be used in optical devices. The temperature-dependent effective thermal conductivities of CaO–BaO–CoO–Al \(_{2}\) O \(_{3}\) –SiO \(_{2}\) –GeO \(_{2}\) glass–ceramics from 295.5 K to 780 K are determined using a \(3\omega \) method. One of the main advantages for the \(3\omega \) method is to diminish radiation errors effectively when the temperature is as high as 1000 K. Thermal conductivities of CaO–BaO–CoO–Al \(_{2}\) O \(_{3}\) –SiO \(_{2}\) –GeO \(_{2}\) increase with a rise in temperature. Effective thermal conductivities of a sample increase from \(1.55~\hbox {W}\cdot \hbox {m}^{-1}\cdot \hbox {K}^{-1}\) at 295.5 K to \(7.64~\hbox {W}\cdot \,\hbox {m}^{-1}\cdot \hbox {K}^{-1}\) at 698.1 K. The effective thermal conductivity of CaO–BaO–CoO–Al \(_{2}\) O \(_{3}\) –SiO \(_{2}\) –GeO \(_{2}\) glass–ceramic increases with a rise of temperature. This investigation can be used as a basis for the measurement of thermal properties of ceramic materials at higher temperature.  相似文献   

16.
An energy based regression method to estimate critical crack-tip-opening-angle ( $\hbox {CTOA}_\mathrm{C}$ ) of high strength and toughness pipeline steels has been established derived from the Martinelli-Venzi ductile fracture model. Key curve method was applied onto the load-displacement curves of standard pressed-notch drop-weight-tear-test specimens to evaluate the dynamic crack extension, providing a way to verify the correlation between the load and remaining ligament width. In the meanwhile, the material based parameter ( $\hbox {A}^{*} \upsigma _\mathrm{f}$ ), usually required by other $\hbox {CTOA}_\mathrm{C}$ estimation algorithm, could also be determined experimentally. As a result, $\hbox {CTOA}_\mathrm{C}$ of a typical high grade pipeline steel plate was acquired as a constant over steady-state stage during crack propagation, independent of specimen geometry.  相似文献   

17.
High-quality superconducting K $_{x}$ Fe $_{y}$ Se $_{2}$ single crystals were synthesized using an easy one-step method. Detailed annealing studies were performed to make clear the phase formation process in K $_{x}$ Fe $_{y}$ Se $_{2}$ . Compatible observations were found in temperature-dependent X-ray diffraction patterns, back-scattered electron images and corresponding electromagnetic properties, which proved that good superconductivity performance was closely related to the microstructure of superconducting component. Analysis based on the scaling behavior of flux pinning force indicated that the dominant pinning mechanism was $\Delta T_\mathrm{c}$ pinning and independent of connectivity. The annealing dynamics studies were also performed, which manifested that the humps in temperature-dependent resistance curves were induced by competition between the metallic/superconducting and the semiconducting/insulating phases.  相似文献   

18.
The elastic properties of $\eta\hbox{-Fe}_2\hbox{C}$ (eta carbide) have been determined from ab initio density functional theory calculations using the generalized gradient approximation. The isotropic polycrystalline elastic modulus of $\eta\hbox{-Fe}_2\hbox{C}$ has been calculated as the average of anisotropic single-crystal elastic constants determined from the ab initio simulations. The calculated polycrystalline elastic modulus was used to compute the elastic modulus of a case carburised gear steel subjected to shallow cryogenic treatment (SCT) and deep cryogenic treatment (DCT). This value was then compared with experimental values obtained from nanoindentation. The results confirmed that the changes in elastic modulus observed in the DCT steel can be attributed to the precipitation of $\eta\hbox{-Fe}_2\hbox{C}$ . No changes in hardness have been observed between the SCT steel and the DCT steel. These data were then used to assess the surface contact fatigue behaviour of the SCT and DCT steels tested under elastohydrodynamic lubrication conditions.  相似文献   

19.
Climent et?al. (Appl Algebra Eng Commun Comput 22:91?C108, 2011) identified the elements of the endomorphisms ring End ${(\mathbb{Z}_p \times \mathbb{Z}_{p^2})}$ with elements in a set, E p , of matrices of size 2?× 2, whose elements in the first row belong to ${\mathbb{Z}_{p}}$ and the elements in the second row belong to ${\mathbb{Z}_{p^2}}$ . By taking advantage of matrix arithmetic, they proposed a key exchange protocol using polynomial functions over E p defined by polynomials in ${\mathbb{Z}[X]}$ . In this note, we show that this protocol is insecure; it can be broken by solving a set of 10 consistent homogeneous linear equations in 8 unknowns over ${\mathbb{Z}_{p^2}}$ .  相似文献   

20.
During the various carbon dioxide capture and storage (CCS) stages, an accurate knowledge of thermodynamic properties of \(\mathrm{CO}_{2}\) streams is required for the correct sizing of plant units. The injected \(\mathrm{CO}_{2}\) streams are not pure and often contain small amounts of associated gaseous components such as \(\mathrm{O}_{2}, \mathrm{N}_{2}\) , \(\mathrm{SO}_{x}, \mathrm{NO}_{x}\) , noble gases, etc. In this work, the thermodynamic behavior and transport properties of some \(\mathrm{CO}_{2}\) -rich mixtures have been investigated using both experimental approaches and molecular simulation techniques such as Monte Carlo and molecular dynamics simulations. Using force fields available in the literature, we have validated the capability of molecular simulation techniques in predicting properties for pure compounds, binary mixtures, as well as multicomponent mixtures. These validations were performed on the basis of experimental data taken from the literature and the acquisition of new experimental data. As experimental data and simulation results were in good agreement, we proposed the use of simulation techniques to generate new pseudo-experimental data and to study the impact of associated gases on the properties of \(\mathrm{CO}_{2}\) streams. For instance, for a mixture containing 92.0 mol% of \(\mathrm{CO}_{2}\) , 4.0 mol% of \(\mathrm{O}_{2}\) , 3.7 mol% of Ar, and 0.3 mol% of \(\mathrm{N}_{2}\) , we have shown that the presence of associated gases leads to a decrease of 14 % and 21 % of the dense phase density and viscosity, respectively, as compared to pure \(\mathrm{CO}_{2}\) properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号