首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, phenolic foam (PF)/multi-walled carbon nanotubes (MWCNTs) composites were fabricated by in-situ polymerization, and carbonized foams based on these PF foams were prepared and the electrical property was investigated. TEM results indicated excellent dispersion of MWCNTs in the phenolic resin matrix. Scanning electron microscope results indicated that PF composites exhibited smaller cell size, thicker cell wall thickness, and higher cell density, compared with pure PF. The incorporating of MWCNTs significantly improved the mechanical properties of PF. All PF composites showed a lower thermal conductivity versus pure PF. Moreover, the carbonized pure and composites PF exhibited open-cell three-dimensional skeleton carbon structure and the MWCNTs were well-dispersed on the surface of the skeletons. It is noteworthy that the introduction of MWCNTs significantly improved the electrical performances of foams and carbonized foams by construction of conductive MWCNTs network.  相似文献   

2.
Recently aluminum foaming has been of much interest due to its characteristics properties of light weight structure. Metallic foams are highly porous materials which present complex structure of three-dimensional open cells. This aspect causes strong limitations in mass transport due to electro-deposition technology. In this work, the electro-deposition of copper on aluminum open-cell foams substrates was developed, in order to enhance the thermal and mechanical properties of these cellular materials. The mechanical and thermal characterization of the produced samples was lead through compression and conductivity tests. On the basis of the experimental results, analytical models are proposed to predict the quantity and the quality characteristics of the coating.  相似文献   

3.
建立了填充泡沫材料冰蓄冷板内冰融化过程的数学物理模型,该模型考虑了融化液态水自然对流的影响。分别数值模拟了填充开孔聚氨酯泡沫、泡沫铜的冰蓄冷板的融化过程,研究了泡沫材料冰蓄冷板融化过程的速率、温度分布、相界面移动等规律。进行了实验对比,验证分析了泡沫材料的孔隙参数对融化速率的影响。结果表明,填充低导热系数泡沫材料可有效延长冰蓄冷板的释冷时间,该时间随泡沫孔密度的减小而增加、随孔隙率的增大而略减。填充高导热系数泡沫材料可有效改善冰蓄冷板温度分布,可加快冰融化速率,该速率随着泡沫孔隙率的减少而增加、随孔密度的减少而略增。  相似文献   

4.
开孔与闭孔泡沫铝的压缩力学行为   总被引:8,自引:0,他引:8  
康颖安  张俊彦 《材料导报》2005,19(8):122-124
研究了开孔与闭孔两种胞孔结构不同、制备工艺不同的泡沫铝在准静态压缩载荷下的压缩响应曲线.结果表明:开孔与闭孔泡沫铝压缩应力-应变曲线均具有多孔泡沫材料明显的三阶段特征,即线弹性段、塑性屈服平台段及致密段;相对密度对泡沫材料的力学性能(如杨氏模量、屈服强度)有很大影响;在准静态下,开孔泡沫铝表现出明显的应变率效应,而闭孔泡沫不如开孔敏感;泡沫铝材料表现为弱的各向异性;胞孔结构影响两种泡沫材料的压缩响应曲线.  相似文献   

5.
Reticulated vitreous carbon (RVC) foams were manufactured by multiple replications of a polyurethane foam template structure using ethanolic solutions of phenolic resin. The aims were to create an algorithm of fine tuning the precursor foam density and ensure an open-cell reticulated porous structure in a wide density range. The precursor foams were pyrolyzed in inert atmospheres at 700°C, 1100°C and 2000°C, and RVC foams with fully open cells and tunable bulk densities within 0.09–0.42 g/cm3 were synthesized. The foams were characterized in terms of porous structure, carbon lattice parameters, mechanical properties, thermal conductivity, electric conductivity, and corrosive resistance. The reported manufacturing approach is suitable for designing the foam microstructure, including the strut design with a graded microstructure.  相似文献   

6.
Different relative density polypropylene foams were prepared by means of two foaming processes: chemical foaming by compression moulding and physical foaming by high pressure CO2 dissolution. By controlling the foaming parameters, such as blowing agent concentration, foaming temperature, pressure drop and pressure drop rate, it was possible to regulate the cellular structure, foams showing from markedly isotropic-like cellular structures to ones with highly-elongated cells in the vertical foam growth direction (honeycomb-like cell orientation). The thermal conductivity was measured using the transient plane source method. Using this technique, it was possible to measure the global conductivity and the thermal conductivity in both the axial and radial directions of a given sample. Results show that the global thermal conductivity of foams was mainly regulated by their relative density. In addition, the honeycomb-like cell orientation of the CO2 dissolution foams resulted in considerably higher values in axial direction when compared to radial, demonstrating that there was a direct influence of cellular structure on the thermal conduction behaviour of these foams, enabling the development of new polypropylene foams with direction-dependent thermal properties.  相似文献   

7.
芳香族聚酰亚胺泡沫的隔热性能研究   总被引:3,自引:0,他引:3  
利用DMTA和自制热导测试仪测试了4种自制芳香族聚酰亚胺泡沫的玻璃化转变温度(Tg )、静态温度下的热导率(λ)和动态温度作用下的隔热性能;分析了一定厚度的聚酰亚胺泡沫的密度和温度影响热导率的规律;考察了聚酰亚胺泡沫在动态温度下的隔热性能.结果表明:单体(尤其是二胺)刚性越大,聚酰亚胺泡沫的玻璃化转变温度越高;在密度为50~140kg/m3范围内,聚酰亚胺泡沫的密度对热导率的影响较小;在温度为50~350℃范围内,温度的升高使聚酰亚胺泡沫的热导率增加;在动态温度下,聚酰亚胺泡沫表现出明显的热滞后性.  相似文献   

8.
The effects of liquid-type nucleating silane additives on the cell structure, mechanical strength, and thermal insulating properties of the polyisocyanurate (PIR) foams have been studied. The PIR foams synthesized with hexamethyldisilazane (HMDS) as a silane additive showed the smaller average cell size and lower thermal conductivity than those of the PIR foams prepared with the hexamethyldisiloxane, dimethoxydimethylsilane, and hexadecyltrimethoxysilane. When HMDS was added, average cell size of the PIR foam was becoming smaller due to lower surface tension of the polyol solution, thereby the nucleation rate and number of bubbles produced were increased and then the cell size becomes smaller. The additives likely act as nucleating agents during the formation of PIR foams. The smaller cell size appears to be one of the major reasons for the improvement of thermal insulation properties and mechanical properties of the PIR foams. From the results of cell size, thermal conductivity, and mechanical strength of the PIR foams, it is suggested that the HMDS may be the efficient liquid-type additive for the reduction of cell size and improvement of the thermal insulation property of the PIR foams.  相似文献   

9.
Syntactic foams are attractive for applications that require materials with high impact strength and low thermal conductivities. Because syntactic foams are manufactured by dispersing hollow microspheres in a resinous matrix, their characteristics are functions of the type and relative amounts of these materials. In this work, a discussion of an experimental approach to measure the thermal conductivity of three-phase syntactic foams (hollow carbon microspheres in a porous APO-BMI binder, analysis of the data and the comparison to predictive models are presented. The thermal conductivity of three-phase syntactic foams is measured using a Holometrix© steady-state heat flow meter. The experimental data are found to be accurate to within a reasonable range of experimental error and are compared to three of the more reliable predictive models that have been used successfully to estimate the thermal conductivity of similar foams. It is observed that the model predictions at lower temperatures are more accurate as compared to those at higher temperatures. Also, that a model based on the concept of self-consistent field theory better predicts the thermal conductivity of syntactic foams than one based on resistance-in-series. Sensitivity studies indicate a strong dependency of the thermal conductivity of the three-phase foams on the thermal conductivity of the carbon used in the microspheres.  相似文献   

10.
基体性能对泡沫铝力学行为的影响   总被引:7,自引:0,他引:7  
田杰  胡时胜 《工程力学》2006,23(8):168-171,176
用渗流法制备了不同基体的开孔泡沫铝,利用MTS810和SHPB研究了其准静态和动态力学性能。实验结果表明,泡沫铝基体的性能对泡沫铝材料的力学行为有显著的影响。准静态压缩时脆性泡沫有非常长而平缓的屈服平台区,韧性泡沫的屈服段的应力随着应变的增加而缓慢增加。脆性泡沫的吸能效果总体优于韧性泡沫。  相似文献   

11.
以聚碳硅烷(PCS)和三甲胺基环硼氮烷聚合前驱体(PBN)进行共聚合制得复合前驱体, 以此为原料采用高压裂解发泡技术制备了一种氮化硼/碳化硅(BN/SiC)复相开孔泡沫陶瓷. 由包含不同比例组分的起始前驱体所制得的泡沫陶瓷的孔隙直径在1~5 mm, 体积密度在0.44~0.73 g/cm3之间. 对该陶瓷材料的微观结构和性能的研究表明, 由于BN相的引入使得BN/SiC复相泡沫陶瓷在800~1100℃的抗氧化性能有了显著的提高; 其压缩强度随着引入BN比例的增加而提高, 约为纯SiC泡沫陶瓷的5~10倍. 其中以组分重量比为1:1的起始复合前驱体所制备BN/SiC复相多孔陶瓷在1500℃时的导热系数仅为4.0 W/(m·K); 对其进行隔热性能测试, 材料热面中心温度为1400℃时, 其背面中心温度仅为280℃; 采用有限差分法数值模拟背部升温历程, 将其有效导热系数代入计算模型, 得到材料背部中心温度升温历程的数值模拟结果, 与实际升温历程基本一致.  相似文献   

12.
Metal foams are used as absorbers for kinetic energy but predominantly, they have only been investigated under quasi-static load-conditions. Coating of open-cell metal foams improves the mechanical properties by forming of Ni/Al hybrid foam composites. The properties are governed by the microstructure, the strut material and geometry. In this study, the strain-rate effects in open-cell aluminium foams and new Ni/Al composite foams are investigated by quasi-static compression tests and low-velocity impact. For the first time, drop weight tests are reported on open-cell metal foams, especially Ni/Al composite foams. Furthermore, size-effects were evaluated. The microstructural deformation mechanism was analysed using a high-speed camera and digital image correlation. Whereas pure aluminium foams are only strain-rate sensitive in the plastic collapse stress, Ni/Al foams show a general strain-rate sensitivity based on microinertia effects and the rate-sensitive nano-nickel coating. Ni/Al foams are superior to aluminium foams and to artificial aluminium foams with equal density.  相似文献   

13.
黄赤  汪波  秦岩  黄志雄 《复合材料学报》2016,33(8):1630-1637
以空心玻璃微球(HGM)填充环氧树脂制备了密度为0.56~0.91 g/cm3的HGM/环氧复合泡沫塑料。研究了HGM含量对复合泡沫塑料黏度、力学性能、动态力学性能及隔热性能的影响。结果表明:表面偶联处理后增加了HGM的表面亲油性,改善了其与基体树脂间的相容性和界面性能,有利于HGM/环氧复合泡沫塑料性能的提高;体系黏度与HGM含量呈正相关,与温度呈负相关;随着HGM含量的增加,HGM/环氧复合泡沫塑料的压缩强度、弯曲强度和拉伸强度均有一定程度的降低,但是比强度变化不大,材料得到很大程度的轻质化;HGM的引入使得HGM/环氧复合泡沫塑料玻璃化转变温度向低温方向偏移,储能模量呈现先减小后增加的趋势,导热系数由纯环氧树脂的0.203 W/(m·K)减小到HGM含量为40wt%时的0.126 W/(m·K)。HGM/环氧复合泡沫塑料阻尼性能和隔热性能均有所提高。   相似文献   

14.
In this study, a commercially available foam injection-molding machine was enhanced with a mold opening technique to produce polypropylene open-cell acoustic foams. Gas counter-pressure was used to improve the cell morphology and uniformity of the injection-molded foams. Their structure and thickness were controlled by applying different degrees of mold opening. The sample structure, the cell morphology, and the acoustic behavior of the foams were characterized. A foamed structure with an open-cell content of 67% and an expansion ratio of 4.6 was obtained when the mold was opened by 4.5 mm. Although further opening of the mold did not significantly increase the open-cell content, it triggered crack creation in the middle of the foams, where the creation of cavities was also facilitated. The injection-molded foams with a cavity and a high open-cell content, presented remarkable acoustic properties: a peak absorption coefficient of 0.95 was observed for foam with a 73% open-cell content and a 9 mm cavity. An automated system was also developed to perforate the acoustic foams, and the acoustic properties of foams both with and without perforation were studied. While perforating the foams widened their absorption coefficient frequency spectrum, it did not improve their transmission loss.  相似文献   

15.
Metal foams are attractive in a number of industrial applications due to their light structures whereas a reduction of weight is a main factor for saving energy. Symmetry is very important in analytical modeling as symmetrical conditions simplify considerably the analysis. This technique is practical to use for large engineering structures where mechanical evaluations by approximate methods consume considerable computer time. In the current analysis a 3D symmetrical model is considered for the determination of mechanical properties of open-cell Al foams under compression load. The model consists of a unit cubic cell and produces good results compared to experimental and theoretical values for a long range of cell sizes. It is solved by the finite element method using CATIA program. Finally, it is verified that symmetry can be used successfully for mechanical property evaluation of open-cell Al foams with cell sizes of range 0.5–3 mm and relative densities of range 0.05–0.11.  相似文献   

16.
开孔金属泡沫的传热分析   总被引:3,自引:0,他引:3  
闫长海  孟松鹤  陈贵清  杜善义  刘国仟 《功能材料》2006,37(8):1292-1294,1302
主要从开孔金属泡沫微观组织的基本结构出发对开孔金属泡沫内的固体热传导、气体热传导和热辐射进行了分析,根据以上的分析利用能量方程和两热流法建立了开孔金属泡沫的传热模型,并利用试验对泡沫镍的有效导热系数进行了测量,泡沫镍的有效导热系数实验值验证了开孔金属泡沫传热模型的正确性.  相似文献   

17.
Thermal barrier coatings are generally designed to possess very low thermal conductivity to reduce the conduction heat transfer from the coating surface to the metal turbine blade beneath the coating. In high-temperature power generation systems, however, a considerable amount of radiative heat is produced during the combustion of fuels. This radiative heat can propagate through the coating and heat up the metal blade, and thereby reduce the effectiveness of the coating in lowering the thermal load on the blade. Therefore, radiative properties are essential parameters to design radiative barrier coatings. This article presents a combined radiation and conduction heat transfer model for the steady-state temperature distribution in semitransparent yttria-stabilized zirconia (YSZ) coatings. The results of the model show a temperature reduction up to 45 K for YSZ of high reflectance (80%) compared to the YSZ of low reflectance (20%). The reflectivities of YSZ and metal blade affect the temperature distribution significantly. Additionally, the absorption and scattering coefficients of YSZ, the thickness of the coating, and the thermal conductivities of YSZ and metal blade affect the temperature distribution.  相似文献   

18.
Metal foams are one of the most interesting types of materials although there is limited information concerning their thermal and electrical conductivity. Closed cell different density Alporas foams are investigated, which has one of the most homogeneous cell size distribution recently. Comparative method has been chosen to determine the thermal conductivity of the samples in the function of the temperature at 30, 100, 200, 300, 400, 500 °C. For measuring the electrical conductivity of aluminium foams a special low frequency eddy current measuring apparatus was used. The ratio of thermal and electrical conductivity was calculated and shown an increasing function by the density of the foams.  相似文献   

19.
《Composites Part B》2013,45(1):172-183
The mechanical properties of cellular materials are still subject to numerous theoretical and experimental investigations. In particular, the impact of cell size on the foam’s elastic response has not been studied systematically mainly due to the lack of experimental techniques with which the cell size and relative density of materials can be varied independently. This paper presents the results of a study of the elastic behavior of open-cell foams as a function of relative density and the size of the interconnected, spherical pores. First, the chemical procedure allowed us to produce polystyrene open-cell foams in which the relative density and the average cell diameters were varied independently. The results of compression tests performed on these foams showed an unexpected influence of the cell diameter (at constant relative density) on the elastic response. The analysis of the microstructure of the foam revealed the presence of a complex nanostructure in the edge of the cells that appeared during the synthesis procedure. An analytical model (an extension of the Gibson–Ashby model) is presented, which takes into account the complex multi-scale structure of the foam and accurately describes the observed dependence of the measured Young’s moduli on cell size. This approach was confirmed further by a finite element numerical simulation. We concluded that the observed dependence of elastic modulus on cell size was due to the heterogeneous nature of the material that constitutes the walls of the cells.  相似文献   

20.
The power-law creep of open-cell Voronoi foams is calculated using finite element analysis. The results are used to determine the geometrical constants in the power-law creep model for an open-cell foam with a random microstructure. In some foams, individual struts may be missing, either through fracture, as is the case in some metallic foams, or through resorption, as is the case in osteoporotic trabecular bone. Analysis of the effect of random removal of struts within the foam on the creep rate indicates that it can have a dramatic effect: removal of only a few percent of the struts can increase the creep rate by one to two orders of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号