共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
由于克劳斯炉硫回收系统硫化氢酸气组分不稳定、杂质多对系统及产品造成严重影响:硫化氢酸气中氨、苯、萘、重烃等杂质较多,硫化氢含量波动,尾气管道大,燃烧器前管道堵塞,停除盐水系统连锁停车等,因此将硫回收系统进行工艺改造升级,提高助燃空气氧含量,成品硫磺采用滚筒造粒装置,增加液流捕雾器补集能力,增加尾气管道保温、增加备用酸气管道,新增废旧硫磺回收装置。 相似文献
4.
在克劳斯法制硫工艺中,影响产品酸度的主要因素是多硫化氢。降低余热回收器出口气温或液硫的温度或将产品脱气,可降低产品酸度。 相似文献
5.
6.
7.
8.
随着陕西省大气污染防治行动计划的开展及地方质量监管部门关于企业用煤相关要求的提高,陕西延长石油兴化化工有限公司克劳斯硫回收尾气面临超标的问题,且环保要求禁止焚烧炉尾气直排.为此,陕西兴化积极探索新的途径,本着节省投资的原则,经综合考虑,决定通过适当提高硫回收系统的运行压力,将从焚烧炉出来的高温尾气经废锅回收热量后出口尾... 相似文献
9.
10.
针对聚乙烯装置扩能改造后排放气回收系统运行不稳定导致物耗、能耗增加的问题,建立ASPEN流程拟合模型。通过模拟计算,找到了该系统关键部位低压冷凝罐的最佳操作温度,并排除了回收压缩机“带液”操作的可能性。利用模拟计算结果,在实际操作中提高了低压冷凝罐操作温度,将原设计的低、高压冷凝段共同回收冷凝液改为仅高压段回收,停运了回收系统中1台低压回收泵和1台低压段冷冻机,解决了低压回收泵运行不稳定的问题,增加了冷凝液回收量,降低了装置的能耗、物耗。 相似文献
11.
从工艺特点、流程等方面结合国内硫回收工艺现状分析SuperClaus和EuroClaus两种工艺在煤化工装置应用的可行性及其局限性,介绍SCOT和Cansolv两种新工艺的概况,提出对未来硫回收工艺发展的展望。 相似文献
12.
介绍改良的Claus工艺加Clinsulf工艺的硫回收系统的工艺流程,总结系统的运行状况,分析系统运行不正常的原因,提出改造措施,经过改造后系统运行效果良好. 相似文献
13.
14.
An interactive program based on the Gibbs free energy minimization and the FLOWTRAN system analysis was written to simulate various schemes of the Claus process. Dew point calculation and feedback control loops were provided. Certain species are treated as inerts in units like condensers, reheaters, and the waste heat boiler, Simulation of the Claus process air demand and simulation of two Claus plants (including a commercial one) were presented and the results analyzed. 相似文献
15.
介绍了CLAUS硫磺回收装置中过程气的再热方式及国内硫磺回收装置再热方式的应用情况,并探讨了各种再热方式的优缺点。通过对再热方式的比较分析,对CLAUS硫磺回收装置中再热方式的选用提出建议。 相似文献
16.
洛凯特硫回收工艺产品为硫质量百分数约60%的硫磺滤饼,若要达到商品级硫磺,必须配套硫磺精制对产生的硫磺滤饼进行熔硫处理。该文介绍洛凯特硫回收工艺下游配套的硫磺精制设计方案。 相似文献
17.
18.
19.
The main disadvantage of the Claus process is that by introducing air as oxidant a large volume of tail gas is produced. This must be treated to reduce atmospheric emissions of sulfur-containing gases. The costs of the tail-gas unit are a significant fraction of the total capital and operating costs for sulfur recovery. A new process uses thermal decomposition of hydrogen sulfide in the presence of carbon dioxide instead of air oxidation. The products of this reaction are hydrogen, carbon monoxide, elemental sulfur, water vapor and carbonyl sulfide. Carbonyl sulfide is easily converted to H2S and C02 by liquid- or vapor-phase hydrolysis. Unreacted H2S and C02 are recovered by absorption and recycled to the reactor. Since no air is introduced, there is no tail gas and the tail-gas unit is eliminated, giving a substantial reduction in capital investment. The concentrations of sulfur-containing gases in the product streams depend only on the operation of the absorber and stripper units and can be controlled to very low levels by increasing stripper boil-up. Process operating costs depend on the level of sulfur recovery required and can also be much lower than those of the modified Claus Process.
The process chemistry depends on a shift in the equilibrium of H2S decomposition caused by reaction of hydrogen with C02 by the reverse of the water-gas-shift reaction. Catalysts for this chemistry have been identified. Reactor conversion is further improved by rapid cooling of the reactor effluent gas. Other aspects of process design and operation confer further advantages with respect to the Claus process; however, the process equipment used is similar to that used in a Claus plant. Retrofit of existing plant to the new technology can therefore be considered. 相似文献
The process chemistry depends on a shift in the equilibrium of H2S decomposition caused by reaction of hydrogen with C02 by the reverse of the water-gas-shift reaction. Catalysts for this chemistry have been identified. Reactor conversion is further improved by rapid cooling of the reactor effluent gas. Other aspects of process design and operation confer further advantages with respect to the Claus process; however, the process equipment used is similar to that used in a Claus plant. Retrofit of existing plant to the new technology can therefore be considered. 相似文献