首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
压裂泵阀箱强度及寿命分析   总被引:3,自引:2,他引:1  
对阀箱进行有限元强度和寿命计算,找到危险截面和应力分布状态,对于阀箱可靠性评估、改进设计和正确使用具有重要意义。采用与Pro/E无缝结合的有限元分析工具Pro/Mechanica对某70MPa压裂泵阀箱进行了有限元强度和疲劳寿命分析。通过对应力图动态查询可知,最大应力为694.7MPa,位于缸腔与柱塞腔相贯部位拐角处,内腔平均应力为347.6MPa。整体上阀箱的疲劳寿命为1×1020次,阀箱整体强度足够,但薄弱环节的最低疲劳寿命仅为1×104.803次。为此设计时应加大关键部位的圆角半径,以减小应力集中。为了延长泵头的工作寿命,可采用自增强、复合强化、喷丸处理等工艺措施。  相似文献   

2.
压裂泵曲轴在压裂工况下受到周期性变化的复杂载荷作用,其疲劳寿命分析为设计主要问题。建立140 MPa五缸压裂泵曲轴精细化模型,根据实际受载工况进行约束及载荷分布的合理等效,应用ANSYS软件对曲轴工作周期内多位置工况进行有限元静力分析,得到相应曲轴应力分析结果。采用专业的疲劳分析软件FE-SAFE,通过合理提取曲轴序列静力分析结果确定载荷谱,进行疲劳寿命、疲劳安全系数计算,实现曲轴疲劳寿命定量分析。为压裂泵优化设计提供理论依据。  相似文献   

3.
压裂泵液力端在现场应用中承受脉动循环高压,易产生疲劳裂纹且不同液缸的疲劳寿命存在差异。为此,建立现场某型号压裂泵液力端的整体有限元模型,利用ANSYS与nCode DesignLife疲劳耐久性分析软件对液力端进行静力学分析与疲劳寿命预测,研究液力端不同液缸发生疲劳破坏的规律。研究结果表明:液力端在试压142.5 MPa与正常工作95 MPa这2种状态下,最大应力分别为915.89和600.36 MPa,均小于其材料的屈服应力1 070 MPa,静力学强度满足要求;液力端各个液缸易发生疲劳破坏的位置均位于液缸内部的弹簧卡座处,与液力端在现场使用过程中出现的疲劳裂纹的位置相符;液力端5个液缸中寿命最长的为4#缸,寿命最短的为1#缸,1#缸的疲劳寿命大约为4#缸的60%,液力端整体呈现出1#、5#缸比2#、3#、4#缸疲劳寿命短的规律。研究结果可为该型号压裂泵液力端的优化设计提供理论依据。  相似文献   

4.
莫丽  黄岗  黄崇君  何霞 《石油机械》2012,40(9):96-99
对液氮泵内缸套进行有限元强度分析和疲劳寿命分析计算,找到危险位置与应力分布状态,对液氮泵缸体的可靠性评价、指导改进设计和正确使用具有重要意义。为此,采用Solid-works Simulation有限元分析软件,对某76 MPa液氮泵内缸套进行有限元强度和疲劳计算,并分析了吸入压力对强度和疲劳寿命的影响。分析结果表明,对该液氮泵内缸套采用无相贯线设计,有效地避免了相贯线的应力集中,静强度足够,整体疲劳寿命满足设计要求。但内缸套最大应力与最小疲劳寿命均出现在内缸套大端台阶边缘处,根据入口压力与强度和疲劳关系曲线认为,适当提高吸入压力可以有效改善内缸套强度和延长其疲劳寿命。  相似文献   

5.
介绍了F1-1600型钻井泵液力端的工作过程,其中的液缸容易产生疲劳失效。用三维建模软件UG NX7.0建立液力端和液缸的三维实体模型。根据液缸在实际工作过程中的连接关系和受力情况对其施加相应的载荷和约束,利用UG NX7.0软件的有限元分析模块NX NASTRAN对其分析求解,得到液缸在34.5 MPa压力下的应力云图和位移云图。校核表明,液缸的强度符合ASMEⅧ标准的要求。  相似文献   

6.
以短管蜂窝夹套为研究对象,采用ANSYS有限元方法,模拟分析了短管排列方式改变对夹套静应力的影响及热应力-机械场对夹套结构强度的影响,进行了夹套疲劳寿命的校核。研究结果表明,在模拟试验条件下,三角形排列方式短管蜂窝夹套结构的总体应力为212.382 MPa,最大当量应力值为266.512 MPa,内筒体内陷量为0.854 mm,外壳外凸量为0.579 mm;正方形排列方式短管蜂窝夹套结构的总体应力为170.215 MPa,最大当量应力值为199.982 MPa,内筒体内陷量为1.573 mm,外壳外凸量为1.183 mm。2种短管排列方式的蜂窝夹套结构均满足强度要求和疲劳寿命要求。  相似文献   

7.
基于ANSYS的平台波流载荷下动力分析及疲劳分析   总被引:1,自引:0,他引:1  
介绍了使用ANSYS有限元软件对平台结构进行静力分析、动力分析和疲劳分析的方法。应用ANSYS软件可以直接对波流载荷作用下的平台进行有限元分析,而且建模简单、计算精度高,可以方便地考虑载荷的随机性。根据ANSYS计算得到的应力,应用管节点的热点应力公式得到平台构件实际的疲劳应力,并使用S-N曲线法计算平台构件的疲劳损伤。对实际的平台进行数值计算,计算出的平台位移最大值和响应周期与现场实际测量值基本一致,这说明计算方法和数学模型是正确的。ANSYS有限元软件可以方便地计算平台结构在波浪、海流载荷下的动力响应和疲劳寿命,是进行平台设计和校核的有效工具。  相似文献   

8.
FIS2200型钻井泵是为适应深井超深井钻井作业的需要而研制和开发的,液缸的承压能力和可靠性是确定泵设计参数和工作寿命的决定性因素。采用Pro/E、ANSYS等软件建立了FIS2200型钻井泵液缸的三维有限元分析模型,计算了其动、静强度和动态特性,获得了液缸在额定栽荷作用下应力云图、动应力响应以厦最大变形位置和变形量。计算结果表明,FIS2200型钻井泵液缸的动态性能丸好,而且其结构动、静强度和疲劳极限足够,可以减小液缸外形尺寸,以减轻液缸的质量。  相似文献   

9.
柱塞泵液缸作为主要承载部件,在超高压脉动循环压裂液的作用下极易发生疲劳破坏,自增强处理是提高液缸强度和疲劳性能的有效措施。以额定压力140 MPa的柱塞泵液缸为例进行理论分析,确定最佳自增强压力(370 MPa)和工艺方法,据此制定自增强试验的工艺方案,并针对多开口结构形式的液缸进行超高压自增强试验装置的设计,使得柱塞泵液缸自增强试验得以实现。解决了超高压试验设备的选型问题,重点是对超高压分级卸荷阀的选择,并完成多开口结构形式液缸本体超高压密封结构设计。  相似文献   

10.
五缸压裂泵曲轴载荷计算及疲劳寿命分析   总被引:3,自引:3,他引:0  
简述了目前有限元法在曲轴分析中存在的问题,介绍了曲轴的载荷计算方法.运用有限元分析法对五缸单作用压裂泵曲轴进行强度分析,并以某型号压裂泵为例,建立了曲轴三维模型,计算出2种恶劣工况下的载荷;得出曲轴应力和应变分布情况.运用动应力载荷谱分析了曲轴的疲劳寿命,为曲轴设计提供了依据.  相似文献   

11.
压裂泵液力端阀箱内腔在加工完成后会自然形成相贯线,该相贯线位置存在严重的应力集中问题。这些位置也是液力端阀箱常见的开裂位置,虽然通过相贯线倒圆角的方式可以减小应力集中程度,但是应力减小的幅度不是十分明显。针对此问题,通过有限元仿真对比的方式进行了阀箱内腔优化研究,提出了减小阀箱内腔应力集中程度的技术方案,同时提出了应用该方案时应注意的一些问题。研究结果对于提高压裂泵液力端使用寿命及优化压裂泵液力端设计具有一定的指导意义。  相似文献   

12.
多级压裂诱导应力作用下天然裂缝开启规律研究   总被引:1,自引:0,他引:1  
非常规储层多级压裂过程中,诱导应力是影响天然裂缝是否开启和压裂效果的重要因素。根据岩石力学理论和天然裂缝的受力状态,推导出压裂过程中地层应力分布计算模型,得到天然裂缝发生张性破坏和剪切破坏开启的力学条件。黑185井的模型计算结果表明:水平井压裂时存在诱导应力,由于诱导应力的影响,沿井筒方向的地应力增大1.70 MPa,地应力状态发生改变;考虑诱导应力的天然裂缝开启所需的压裂最小泵压为29.27 MPa;不考虑诱导应力的压裂最小泵压为26.31 MPa。研究结果表明,多级压裂产生的诱导应力使天然裂缝开启变得困难,诱导应力增大,天然裂缝开启所需的泵压增大,二者呈线性关系,实际压裂设计时应考虑诱导应力的影响。   相似文献   

13.
王军  李超 《焊管》2020,43(2):12-17
为了探究残余应力对13Cr油管性能的影响,采用环切法和盲孔法对13Cr油管的残余应力进行了研究。结果显示,Φ88.9 mm×6.45 mm 13Cr油管周向平均残余应力超过200 MPa,轴向平均残余应力超过140 MPa,随着时间的推移,油管残余应力降低,端部残余应力释放更快。结果表明,盲孔法测得的残余应力具有较高的可靠性,环切法可以宏观反映油管环向残余应力,影响因素少,数据准确,但却无法反映轴向残余应力大小,盲孔法弥补了环切法这一缺点,但因盲孔法影响因素多,实际操作复杂,建议作为残余应力辅助测试手段。  相似文献   

14.
为了提高双头单螺杆泵的工作效率和使用寿命,研究了结构参数对其工作效率及使用寿命的影响。基于橡胶Mooney-Rivlin双参数模型理论,考虑橡胶衬套材料具有非线性变形特性、内压及转子惯性对橡胶衬套的作用,建立了双头单螺杆泵一个导程的定转子三维啮合模型,分析了过盈量、偏心距对螺杆泵定子衬套应力和摩擦阻力矩的影响。数值模拟结果显示,偏心距选择7.5 mm时,过盈量由0.2 mm增加到0.6 mm,螺杆泵摩擦阻力矩从88.52 N·m增大到466.51 N·m,衬套应力峰值由1.4 MPa增加到1.8 MPa;而过盈量取0.4 mm时,偏心距由7.3 mm增大到7.5 mm,摩擦阻力矩从240.00 N·m仅增加到264.77 N·m,衬套应力峰值由1.28 MPa增加到1.62 MPa。这表明,合理搭配过盈量和偏心距可以提高螺杆泵的工作效率和使用寿命,为螺杆泵设计及结构参数优化提供了理论依据。   相似文献   

15.
在石油钻采中,封隔器卡瓦承受巨大压力易发生断裂,直接影响到封隔器的密封性能,从而影响油井的开采过程及生产安全。运用有限元分析软件ANSYS Workbench对卡瓦进行有限元数值模拟分析。施加140 kN载荷时,卡瓦最大应力为230.11 MPa,超过其材料的最大抗压强度;对卡瓦封隔器试验模型进行压裂试验,试验施加压力为186.33 kN时卡瓦发生断裂,测得抗压强度为233 MPa;对卡瓦进行结构设计,卡瓦牙间距尺寸分别为15 mm、25 mm和30 mm。根据有限元分析结果,卡瓦牙间距为30 mm时卡瓦应力、应变分布趋于均匀,所承受的最大载荷为240 kN,最大应力为230.66 MPa、最大变形量为0.058 mm,证明此卡瓦结构尺寸较为合理。  相似文献   

16.
顺北区块超深井?444.5?mm大尺寸井眼井段长达5000?m,不但需要面对提速、控斜难题,而且存在稳定器母扣频繁失效问题.为此,从钟摆钻具组合(BHA)动力学分析着手,探讨了大尺寸井段稳定器母扣失效机制.基于钻柱动力学有限元方程,研究了大尺寸井眼中BHA稳定器处的复杂动力学特征,确定了稳定器母扣附近的动态弯矩和涡动特...  相似文献   

17.
触变性水泥浆是现场防窜、堵漏的有效手段之一,但是在注水泥过程中若临时停泵,再启泵时启动压力会随停泵时间增加而增大,启动压力过大可能压漏薄弱地层,甚至无法启泵。针对上述情况,在分析多种触变性模型的基础上,提出了描述触变性水泥浆特征的模型;并将该模型与压降方程结合,得出了注触变性水泥停泵安全启动预测模型。用该模型分析触变性水泥浆在不同井身结构下的启动压力,实例计算结果表明:停泵时间越长,环空间隙越小,所需要启动压力越大,停泵30或60 min后启动压力分别达到13.94和21.12 MPa,选用φ139.7 mm的套管停泵30 min的启动压力比用φ177.8 mm的套管低了4.66 MPa,停泵60 min的启动压力降低了7.51 MPa,触变剂加量改变影响附加压耗,触变剂加量由5%降为2.5%后,30 min的启动压力降低了42.73%。因此触变性水泥浆应在环空间隙较大的井使用,可降低因故停泵重启泵时的风险。   相似文献   

18.
高压压裂泵阀箱的强化处理   总被引:1,自引:1,他引:0  
高压压裂泵阀箱工作时,内腔表面产生很高的应力。对YLB—1400型压裂泵阀箱的应力分析表明,在两孔相贯线的顶部,峰值应力可达1168MPa,超过了阀箱钢材的屈服极限σs,这种阀箱只有在强化处理后才能使用。液压自增强处理和爆炸处理的关键是利用高的液压或爆炸压力对阀箱内腔预压,使阀箱内表面发生塑性变形而外表面发生弹性变形,并通过弹性恢复在内表层形成高而深的残余压应力层。YLB—1400型压裂泵阀箱经强化处理,在内腔表面危险区域形成-450~-530MPa的残余压应力,可大幅度提高疲劳寿命。  相似文献   

19.
泵阀是压裂泵中最重要的易损部件之一,其强度关系到压裂泵的工作特性。运用Ansys有限元分析软件中Ls-Dyna模块,模拟100 MPa高压环境下阀盘以一定速度冲击阀座的整个过程,对泵阀进行静力以及显示动力下应力、应变分析,找出泵阀的失效原因,为改进泵阀提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号