首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
多姿态人脸识别   总被引:16,自引:0,他引:16       下载免费PDF全文
人脸识别在很多场合都有重要的作用,传统的身份验证是采用某种识别号码等方法, 以阻止伤造的发生。由于人的视觉特征如面部,姿态等是相对稳定而且各不相同的,因此采用这些特征进行身份的识别是可行的本文提出了一种处理多姿态人脸识别的多候选类加权识别方法,为了减少姿态变化的影响,提出了相应的预处理法。  相似文献   

2.
多姿态人脸识别是模式识别领域的难点之一,针对该问题提出的很多效果较好的算法都有其局限性,不能适应人脸状态多变的特征。在局部线性回归算法(LLR)的基础上,对人脸进行归一化校正,并通过引入一个局部常量因子,对不同水平旋转角度的侧脸进行姿态估计得到其正脸。改进后的LLR算法对人脸识别率有较大改善,这表明采用局部常量化和线性化分析,可以较好地弥补侧脸到正脸变换的非线性信息丢失。  相似文献   

3.
基于改进ORB特征的多姿态人脸识别   总被引:1,自引:0,他引:1  
为了克服通过全局特征以及每位个体单个模板样本进行多姿态人脸识别的不足,提出基于改进的ORB局部特征以及每位个体多个模板样本的多姿态人脸识别方法.首先改进ORB算子的采样模式提高算子对人脸视角变化的鲁棒性,并采用每位个体的多个训练样本建立模板库,然后提取并匹配测试样本与模板样本的改进ORB特征.在特征提取阶段,为避免关键点数目变化的干扰,对全部样本提取一致数目的关键点;在特征匹配阶段,采用基于模型和基于方向的双重策略剔除误匹配点对,使用匹配点对数目与平均距离评价测试样本与每个模板样本的吻合程度.对CAS-PEAL-R1和XJTU数据库的实验结果表明,改进的ORB特征具有更好的识别性能;与采用多个训练样本构建个体单个模板样本的方法相比,在训练样本数目相同的条件下,该方法能较好地避免姿态的干扰,具有更好的识别效果.与SIFT算子相比,ORB算子在特征提取与特征匹配2个阶段都具有明显的速度优势.  相似文献   

4.
龚锐  丁胜  章超华  苏浩 《计算机应用》2020,40(3):704-709
目前基于深度学习的人脸识别方法存在识别模型参数量大、特征提取速度慢的问题,而且现有人脸数据集姿态单一,在实际人脸识别任务中无法取得好的识别效果。针对这一问题建立了一种多姿态人脸数据集,并提出了一种轻量级的多姿态人脸识别方法。首先,使用多任务级联卷积神经网络(MTCNN)算法进行人脸检测,并且使用MTCNN最后包含的高层特征做人脸跟踪;然后,根据检测到的人脸关键点位置来判断人脸姿态,通过损失函数为ArcFace的神经网络提取当前人脸特征,并将当前人脸特征与相应姿态的人脸数据库中的人脸特征比对得到人脸识别结果。实验结果表明,提出方法在多姿态人脸数据集上准确率为96.25%,相较于单一姿态的人脸数据集,准确率提升了2.67%,所提方法能够有效提高识别准确率。  相似文献   

5.
提出了一种基于面部图像的新的匹配系统。在这个系统中,输入的图像与各种人脸姿态的数据库图像进行比较,然后,匹配的图像给出了人脸姿态。图像数据库不仅包括各种人脸姿态,而且也包括不同的光照条件,如此,这个人脸姿态评价系统适用于不同的光照条件。对于收集各种不同面部图像,这里是通过计算机自动产生,而不是拍摄实际的照片。特征空间方法被用于寻找与输入面部图像匹配的图像。因为不同的光照图像被收集在面部图像数据库中,故提取的主特征向量主要依靠人脸姿态。由于通过选用主特征向量而减少了向量的维数,故这个匹配过程是很快的。这个姿态评价系统能够继续跟踪在不同的光照条件下不同人的人脸姿态。  相似文献   

6.
针对小样本环境下存在人脸姿态、表情变化等干扰时的人脸识别问题,提出利用基于Haar特征的随机森林分类器完成对注册样本和待识别人脸图像的关键点自适应定位,再以SURF(Speed-Up Robust Features)特征的欧氏距离决策得出初匹配和再匹配关键点,完成人脸识别,解决在小样本环境下识别多姿态人脸图像的问题。实验结果证明,该方法在表情、姿态变化等干扰情况下能有效提高小样本人脸识别的识别率。  相似文献   

7.
根据二维人脸图像与三维人脸图像的信息互补性,本文提出了一种对二维人脸和三维人脸进行决策融合的人脸识别新方法。首先,对规格化后的二维灰度图像进行PCA特征提取,计算测试样本与各类的欧式距离,作为匹配得分。然后,对多层B样条拟合和ICP方法矫正后得到的三维深度图像进行LPP特征提取,得到匹配得分,最后对两种匹配得分进行简单求和决策融合。实验结果表明,该方法有效的提高了识别率。  相似文献   

8.
为了解决随着人脸姿态的变化,人脸识别率迅速下降的问题,提出了利用仿射变换和成像原理相结合对待识别的多姿态人脸图像进行姿态调整,将其调整为近似于正面人脸的方法,该方法能够有效地将45°范围内的多姿态人脸图像调整为正面人脸图像。同时,使用改进的SURF(加速鲁棒特征算法)算法对校正后的人脸图像进行识别。在FERET等人脸库及拍摄的人脸图像上进行实验,实验结果表明该方法能够在一定程度上克服姿态变化带来的影响,使平均识别率最高可提高7.0%左右。  相似文献   

9.
10.
方涛  陈志国  傅毅   《智能系统学报》2021,16(2):279-285
由于人脸面部结构复杂,不同人脸之间结构特征相似,导致难以提取到十分适合用于分类的人脸特征,虽然神经网络具有良好效果,并且有很多改进的损失函数能够帮助提取需要的特征,但是单一的深度特征没有充分利用多层特征之间的互补性,针对这些问题提出了一种基于神经网络多层特征信息融合的人脸识别方法。首先选择ResNet网络结构进行改进,提取神经网络中的多层特征,然后将多层特征映射到子空间,在各自子空间内通过定义的中心变量进行自适应加权融合;为进一步提升效果,将所有特征送入Softmax分类器,同时对分类结果通过相同方式进行自适应加权决策融合;训练网络学习适合的中心变量,应用中心变量计算加权融合相似度。在同样的有限条件下,在使用AM-Softmax损失函数的基础上,融合特征在LFW(Labeled Faces in the Wild)上的识别效果了提升1.6%,使用融合相似度提升了2.2%。能够有效地提升人脸识别率,提取更合适的人脸特征。  相似文献   

11.
近年来人脸识别技术得到了迅速的发展和广泛的研究。利用公开的Pub Fig人脸数据集样本,针对人脸识别框架中3种常用特征的提取算法进行理论分析,并采用lib SVM分类器和感知器算法,对于不同样本容量进行单特征方法和特征融合方法的分类训练、测试以及性能比较。实验结果表明,当各类别训练样本数大于180时,特征的分类能力趋于稳定。单特征分类能力SIFT>HOG>GIST;特征融合的分类能力要高于单特征最大值的1%~2%;它比SIFT、HOG、GIST的平均值分别高出1.2%、4.9%、11.7%。  相似文献   

12.
基于奇异值特征的图像预处理及人脸识别   总被引:5,自引:0,他引:5  
从增强图像的分类信息角度出发,对人脸图像做频域上的带通滤波预处理,来 提高奇异值特征的分类性能.给出了一组圆形滤波函数,并使用遗传算法来选择可分性较大 的频段,设计了染色体的表示方式和适应度的求法.实验证明预处理后奇异值特征的分类效 果比处理前有较明显的提高.  相似文献   

13.
为了提取人脸图像丰富、有效的互补特征集,建立三种基于空域、频域和u域(分数阶傅立叶域)的特征提取模型,分别为基于局部二元模式(LBP)的空域多分辨率特征提取模型与基于频域和u域混合特征提取模型。在决策层,用加权和的方法对三种模型得到的相识度矩阵进行融合得到总的相识度矩阵,用最近邻分类器进行分类得到识别结果。实验表明,该方法能提取出丰富、有效的判别特征,与基于单一特征形式的人脸识别方法相比,识别效果得到了较高的改善。  相似文献   

14.
利用多个稀疏表示分类器融合的决策信息对图像进行分类,可避免单个特征对图像分类的影响。提出一种自适应调节权重的多稀疏分类器融合图像分类方法。对原始图像分别提取3组不同特征,并训练出各自稀疏表示分类器;根据各个子分类器的准确率,通过迭代计算自适应确定各分类器最终权重;融合各子分类器的输出结果进行最终类别判断。基于Cifar-10图像数据集进行多组实验,结果表明,相对仅提取单特征的图像分类方法,该方法有效提高了图像分类准确率。  相似文献   

15.
针对人脸检测识别中受外在条件影响及低识别率的问题,提出一种基于二值图像的Logistic回归和反向传播神经网络BPNN(back-propagation neural network)的人脸识别方法。该算法将彩色图像被转换成灰度图像。使用低通滤波器去噪,将局部窗口标准偏差和自适应阈值应用于灰度图像,得到高质量的二值去噪图像,从中检测可能的人脸区域。使用最近邻居内插方法将其缩小,与每个缩小大小的图像相对应地创建人脸数据库。使用Logistic回归和BPNN来分类属于每个人的所有图像,并为每一类图像获得一个决策边界。图像尺寸的缩小最大限度地减少了逻辑回归和神经网络训练的计算空间和时间。实验结果表明,在FEI图像数据库上Logistic回归和反向传播神经网络的识别精度高达97.5%,优于其他识别算法的精度。  相似文献   

16.
针对传统的稀疏表示分类算法中面部对齐受限而影响人脸识别率的问题,提出一种基于约束采样和面部对齐的稀疏表示分类算法。首先通过使用约束采样对训练图像进行预先标注得到固定脸特征;然后结合图像的纹理信息和形状特征进行面部对齐及特征提取;最后计算出测试样本与各个训练样本之间的相似度,利用稀疏表示分类器完成人脸的识别。在AR、CAS-PEAL及扩展YaleB人脸数据库上的实验验证了算法的有效性及鲁棒性。实验结果表明,约束采样和面部对齐的组合大大提高了人脸识别率,相比几种较为先进的鲁棒人脸识别算法,该算法取得了更好的识别效果。  相似文献   

17.
图像集的离散度矩阵及其在人脸图像识别中的应用   总被引:2,自引:0,他引:2  
本文提出了图像集离散度矩阵的基本概念及用于人脸图像识别的方法。该方法把同一类图像集中的各幅图像的信息矩阵的奇异值向量作为矩阵中的一列构成图像集特征矩阵。把这些矩阵组成一图像库,并找出图像集离散度矩阵和图像库离散度矩阵,从而计算出它们的最佳投影系数。然后,把测试样本的图像集特征矩阵与图像集库中的训练样本图像集的特征按投影系数相比较找出它的相似程度,从而进行人脸图像识别。  相似文献   

18.
提出一种新的图像分割方法应用于PCA中,将包含人脸特征最为明显的额头、左眼、右眼、鼻子、嘴巴等五部分从图像中分割出来,而舍弃双耳以及脸部其余部分等只包含很少特征的部位。在分类识别中引入模糊隶属方法,提出一个新的隶属度函数并加权融合上述五部分的识别结果。基于ORL人脸库的实验表明,所提出的新分割和隶属度函数结合的方法具有很好的分类效果,提高了识别率和执行效率。  相似文献   

19.
当前消化道胶囊内镜图像识别算法存在两个局限,一是要对有差别的病灶设计具体的特征检测算法;二是通过深度学习开展迁移学习时,原训练数据与胶囊内镜图像存在较大差异.因此,提出一种小型通用的基于神经网络与特征融合的胶囊内镜图像识别模型.对图像分离G通道、Log变换和直方图均衡化预处理;采用三个相同卷积神经网络分别对三种预处理后...  相似文献   

20.
为了提高人脸识别的正确率,针对单样本人脸识别训练样本存在的缺陷,提出一种基于图像分块和特征选择的单样本人脸识别算法。首先将人脸图像划分成子块,并分别提取各子块的特征,连接成人脸图像特征向量,然后采用多流形判断分析算法选择对人脸识别结果贡献较大的特征。最后计算采用支持向量机对人脸进行识别,并采用Yale B和PIE人脸库对本文人脸算法的有效性和优越性进行仿真测试。仿真结果表明,相对于当前典型人脸识别算法,该算法提高了人脸识别正确率,获得了更加理想的人脸识别效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号