首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《金属功能材料》2012,(6):51-52
块状各向异性SmCos/a-Fe纳米复合磁体的磁性和结构北京科技大学D.W.Hu等人借助添加表面活化剂的球磨、化学涂覆及热压等方法制备块状各向异性SmCos/a—Fe纳米复合磁体。结构分析和磁性测量表明,含有适宜铁量的纳米复合磁体呈现明显磁各向异性和优良磁性。随铁含量增高,磁体剩磁先是提高,在5%(质量)时达到极大值,  相似文献   

2.
简讯     
《金属功能材料》2012,(2):6+11+17+22+30+41+46+61-64
短时热处理对Nd2Fe14B/α-Fe纳米复合磁体结构和磁性影响罗马尼亚Babes-Bolyai大学物理系V.Pop等人采用高能球磨法制得Nd2Fe14B/α-Fe纳米复合磁体,并选用700℃、750℃、800℃短时间退火,同传统的550℃×1.5h退火对比。结果发现,短时间退火更有利于硬磁相再结晶,抑制软磁相成长,从而提高磁性能。及种短时退火均得到矫顽力,即提高了  相似文献   

3.
采用化学气相沉积法制备单质铁包覆Nd-Fe-B复合磁粉,经放电等离子烧结得到Nd-Fe-B/α-Fe纳米复合磁体.SEM、XRD、XPS研究表明:采用化学气相沉积法可以实现纳米单质铁对Nd-Fe-B磁粉表面的均匀包覆,有效地改善软硬磁性相的分布,提高磁体的综合磁性能.化学气相沉积温度为120℃、沉积时间为30 min时,得到的包覆层致密均匀,单质铁颗粒尺寸50~100 nm.在优化工艺条件下制备出接近全致密的纳米复合磁体,其磁性能可达:Br=0.81 T,Hcj=1286kA/m,(BH)m=108.6 kJ/m3.  相似文献   

4.
采用高能球磨法制得SmCo7-xFex非晶粉末,然后采用放电等离子技术将其烧结为块状纳米晶磁体,对磁体的微观结构和磁性能进行了观察和测试.结果表明,SmCo7-xFex球磨5 h后成为非晶粉末,经SPS烧结后得到1:7相.TEM观察表明,磁体晶粒尺寸在20~50 nm.另外,磁体具有较好的磁性能,当x=0.4时,矫顽力为992.8 kA/m,剩磁为0.634T,(BH)max为69.75KJ/m3.  相似文献   

5.
采用放电等离子烧结(SPS)技术制备致密块状纳米晶SmCo5烧结磁体,研究磁体的结构和磁性能.XRD结果表明:球磨粉末基本为非晶结构,烧结磁体具有CaCu5结构.TEM结果表明:磁体获得晶体均匀分布的组织结构,平均晶粒尺寸约为30 nm.电子选区衍射(SAED)分析表明:磁体主相为SmCO5相.室温时磁体的矫顽力高达2.28 MA/m,而剩磁比Mr/Ms高达0.7,并通过剩磁曲线-M-H及其变化趋势,说明在纳米晶之间存在强烈的晶间交换耦合作用.烧结磁体具有良好的高温性能,773 K时其矫顽力为0.72 MA/m,矫顽力温度系数β为-0.146%/K.  相似文献   

6.
用熔体快淬法制备了高性能纳米双相耦合Nd2Fe14B/α-Fe磁体,研究了Cu/Ti复合添加对Nd2Fe14B/α-Fe纳米双相磁体磁性能和相分解的影响,实验结果表明,Cu和Ti复合添加可提高快淬带的晶化温度,并且改变α-Fe相析出方式,α-Fe直接从TbCu7结构的亚稳相分解中析出,而不是从非晶相中析出,这有利于形成α-Fe相晶粒细小且均匀分布的微结构,其最优磁性能为Hc=384kA/m(4.8kOe),σ=110Am^2/kg(110emu/g),(BH)max=120kJ/m^3(15MGOe)。  相似文献   

7.
利用X射线衍射、透射电镜、振动样品磁强计和差热分析研究了非晶Sm5Fe80Cu1Zr3.5Si5B3C2.5合金中α-Fe/Sm2(Fe,Si)17Cx复合纳米相结构的形成过程、磁性及其晶化动力学.XRD结果表明,随着退火温度的升高,Sm5Fe80Cu1Zr3.5Si5B3C2.5非晶合金先后析出软磁相α-Fe和硬磁相Sm2(Fe,Si)17Cx;当经高温750℃晶化退火后,经Scherrer计算得到合金中α-Fe相和Sm2(Fe,Si)17Cx的晶粒尺寸分别为65.5和22.1nm,其矫顽力增加到58.11kA/m,剩磁为0.967T.晶化动力学分析发现,这种具有较低初始晶化激活能和阶段生长激活能的晶化行为是导致α-Fe相晶粒生长过于粗大和合金中α-Fe和Sm2(Fe,Si)17Cx复合纳米磁体磁耦合性能较差的根本原因.  相似文献   

8.
稀土永磁材料是迄今磁性能最强、应用最广泛的一类永磁材料。与传统的粗晶稀土永磁材料相比,纳米结构稀土永磁材料因其独特的显微组织结构而具有显著不同的磁性能,从而引发了研究者的广泛关注。全面回顾了近年来R-Co(R=Sm, Pr, Y, La)和R-Fe-B(R=Nd, Pr, Tb, Dy)体系纳米结构永磁材料的发展历程。重点介绍了用于R-Co和R-Fe-B纳米结构材料的制备方法,包括熔体快淬、高能球磨(HEBM)、表面活性剂辅助球磨(SABM)和机械化学合成等方法。还讨论了将纳米结构前驱体制备成块状磁体的先进技术,其中包括放电等离子烧结(SPS)、感应加热法(IHC)、冲击波压实(SWC)、燃烧驱动压实(CDC)、高压温压(HPWC)等方法。同时介绍了各向同性以及各向异性的纳米结构单相R-Co和R-Co/Fe纳米复合磁体的微结构特性和磁性能。讨论了各向同性和各向异性纳米结构单相R2Fe14B磁体,以及由硬磁相和软磁相组成的交换耦合纳米复合R-Fe-B/Fe(Co)磁体的磁性。  相似文献   

9.
热处理对Nd2Fe14B/α-Fe纳米复相磁体性能的影响   总被引:1,自引:0,他引:1  
为改善纳米复合永磁合金的磁性能,用熔体快淬和晶化热处理的方法制备了纳米复相Nd2Fe14B/α-Fe永磁体,研究了热处理工艺对Nd8Fe77B6Co8Nb1纳米晶复合磁体磁性能的影响.结果表明,热处理温度和时间明显影响纳米晶的形成及其磁性能.该纳米复合磁体在700℃×7min进行热处理时,可获得较好的磁性能,其矫顽力Hci=692kA/m,剩余磁感应强度Br=0.50T,最大磁能积(BH)max=51kJ/m3.  相似文献   

10.
块体各向异性纳米复合永磁材料的制备   总被引:1,自引:0,他引:1  
本文利用放电等离子烧结技术和超高压-热变形技术制备Nd2Fe14B/α-Fe块体各向异性纳米复合永磁材料,并对永磁体的密度,微结构,磁性能进行了分析与表征,在此基础上评述了两种制备技术的特点.  相似文献   

11.
热加工对纳米复合磁体性能的影响日本大同特殊钢技术开发研究所的入山恭彦用热加工方法开发出一种α-Fe/Nd2Fe14B纳米复合磁体,并研究了热加工对于磁体各向异性的影响。制作工艺大致如下:将Nd-Fe-Co-B系合金高频加热熔化,用单辊熔体旋淬法制成急冷薄带(辊面速度Vs=24m/s);然后将薄带在Ar气氛中粉碎成粒径小于350μm的粉末;  相似文献   

12.
粉末热挤压制备纳米晶复相Nd2Fe14B/α-Fe永磁体   总被引:1,自引:0,他引:1  
将球磨后获得的Nd2Fe14B非晶相和α-Fe纳米晶直接进行冷压制坯、真空包套、粉末热挤压来制备近致密的纳米晶复相Nd2Fe14B/α-Fe永磁体.借助于X射线衍射(XRD)、透射电子显微镜(TEM)和振动样品磁强计(VSM)等分析方法研究了挤压温度为950℃时,不同加热时间磁体相对密度、微观组织和磁性能的影响规律.结果表明,随加热时间的延长,Nd2Fe14B及α-Fe的晶粒尺寸逐渐长大.当挤压温度为950℃,加热时间为15 min时,Nd2Fe14B及α-Fe的晶粒尺寸比较细小,分别为60和80 nm,此时磁性能最好,达到Br=0.98T,Hci=305.6 kA/m和(BH)m=89.8kJ/m3.  相似文献   

13.
以Nd2Fe14B/α-Fe为例,对纳米双相永磁材料软、硬磁性相晶粒间的交换耦合作用和有效各向异性进行了模型化计算,得到软、硬磁性相晶粒间的有效各向异性常数随晶粒尺寸和软磁性相比例的变化关系曲线.结果表明,交换耦合部分采用6种不同函数计算,得到的有效各向异性随晶粒尺寸的变化曲线几乎重合.有效各向异性常数随晶粒尺寸的减小逐渐减小,随软磁性相比例的减小逐渐增大.  相似文献   

14.
采用溶胶-凝胶方法制备了纳米复合永磁材料SrFe12O19/α-Fe2O3.利用差重分析(DTG)、X射线衍射(XRD)、扫描电镜(SEM)与振动样品磁强计(VSM)探讨了热处理条件对磁性材料制备及其组织结构、磁性能的影响.结果表明,不同的热处理工艺导致相变过程不同,直火煅烧有利于纳米复合永磁材料SrFe12O19/α-Fe2O3制备.直火煅烧650℃,纳米复合样品的剩磁、内禀矫顽力和最大磁能积分别为1.33T、358.1kAm^-1和134.8kJm^-3,其剩磁和最大磁能积比分段煅烧样品有了较大提高,证明SrFe12O19/α-Fe2O3粒子间产生了硬磁相和软磁相之间的交换耦合.  相似文献   

15.
综述了采用热变形工艺制备的具有较高磁性能和良好温度稳定性的两类纳米复合磁体的最新进展,介绍了工艺参数和成分对纳米复合磁体的微结构、磁性能和温度稳定性的影响.目前,采用热变形工艺制备的纳米复合磁体的最佳磁能积高达438 kJ/m3.  相似文献   

16.
微合金化是提高α-Fe/Nd2Fe14B和Fe3B/Nd2Fe14B纳米复合磁体综合磁性能的常用方法。在许多情况下,微合金化元素如铜和钕明显减小晶粒尺寸,优化硬磁性能。人们采用三维原子探针(3DAP)和透射电子显微术研究了Fe3B/Nd2Fe14B纳米复合材料微结构形成过程中铜和钕原子的团聚和偏析行为,结果发现,铜原子在非晶晶化前形成高密度原子团(~1024/m3),这些原子团成为Fe3B初次晶的非均匀形核位置,从而细化了最终纳米复合材料的组织结构。日本筑波材料科学研究所材料工程实验室材料物理小组的D. H. Ping研究了这些微量元素在α-Fe/Nd2Fe14…  相似文献   

17.
采用铜模吸铸法制备出厚度为0.8 mm的片状Fe68Nd5Zr2Y4B21大块非晶合金.利用X射线衍射(XRD),差热分析(DTA)和振动样品磁强计(VSM)研究了Fe68Nd5Zr2Y4B21大块非晶合金在铸态和不同温度退火后的磁性能.结果表明,Fe68Nd5Zr2Y4B21大块非晶合金在铸态下为软磁性.合金晶化退火后,磁性能转变为硬磁性,得到了块状的纳米晶复合永磁材料.合金硬磁性的产生是由于合金晶化后产生了Nd2Fe14B硬磁性相和α-Fe,Fe3B软磁性相,软、硬磁相间产生了较强的交换耦合作用而造成的.这一方法为制备块体纳米晶复合永磁材料提供了一种新的手段.  相似文献   

18.
采用放电等离子烧结技术将非晶Pr4.2Tb0.3Fe78B17.5薄带制备成块状纳米晶复合磁体。研究了烧结条件对磁体密度、微观结构和磁性能的影响。结果表明,烧结温度的升高可使磁体得到高致密度,但同时由于其晶粒长大,结果导致磁性能的恶化。在最佳烧结条件下得到磁体的磁性能为Br=1.02T,JHc=220kA/m。磁体具有较好的微观结构,平均晶粒尺寸为20nm。  相似文献   

19.
纳米复合磁体也称交换弹簧磁体 ,是利用交换相互作用使得具有高磁化强度的铁磁性相 (α)与具有大结晶磁各向异性的硬磁性相 ( β)耦合 ,从而获得α的磁化不易受外界磁场影响而反转 ,具有高磁化强度并且矫顽力也很高的新型磁体。纳米复合磁体的典型制造方法是利用熔体急冷法获得非晶合金后再经晶化处理来制得 ;另一种方法则是利用机械合金化法首先获得非晶相与微晶混合组织 ,然后再经热处理来制取。但这些方法都不能控制结晶取向 ,只能制得各向同性材料 ,当前已能生产Fe3B/Nd2 Fe14B、α Fe/Nd2 Fe14B和α Fe/SmFe7Nx…  相似文献   

20.
采用X射线衍射分析、透射电子显微镜、振动样品磁强计研究了经400℃低温热处理前后对Sm5Fe80Cu1Si5B3C2.5Zr<3.5>非晶合金的非晶微结构、晶化后纳米复合永磁体的组织结构及磁性能的影响规律.结果表明,非晶合金直接于750℃退火后软磁α-Fe相和硬磁Sm2(Fe,Si)17Cx相的尺寸分别为50.6和20.6nm,体积分数分别为71.1%和28.9%;而经400℃热处理后复纳米晶组织结构中α-Fe相和Sm2(Fe,Si)17Cx相的晶粒尺寸分别改变为36.5和24.4nm,体积分数分别为76.7%和23.3%,磁交换耦合作用明显增强.径向分布函数计算表明,低温热处理优化了非晶合金的短程有序范围、配位数和最近邻原子间距等微结构参数,改变了原始态非晶合金中α-Fe相和Sm2(Fe,Si)17Cx相的晶化行为,这是细化α-Fe/Sm2(Fe,Si)17Cx复合纳米晶结构和提高磁耦合性能的根本原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号