首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nanocrystalline α-Al2O3 and Ni-modified α-Al2O3 have been prepared by sol–gel and solvothermal methods and employed as supports for Pd catalysts. Regardless of the preparation method used, NiAl2O4 spinel was formed on the Ni-modified α-Al2O3 after calcination at 1150 °C. However, an addition of NiO peaks was also observed by X-ray diffraction for the solvothermal-made Ni-modified α-Al2O3 powder. Catalytic performances of the Pd catalysts supported on these nanocrystalline α-Al2O3 and Ni-modified α-Al2O3 in selective hydrogenation of acetylene were found to be superior to those of the commercial α-Al2O3 supported one. Ethylene selectivities were improved in the order: Pd/Ni-modified α-Al2O3–sol–gel > Pd/Ni-modified α-Al2O3-solvothermal ≈ Pd/α-Al2O3–sol–gel > Pd/α-Al2O3-solvothermal  Pd/α-Al2O3-commerical. As revealed by NH3 temperature program desorption studies, incorporation of Ni atoms in α-Al2O3 resulted in a significant decrease of acid sites on the alumina supports. Moreover, XPS revealed a shift of Pd 3d binding energy for Pd catalyst supported on Ni-modified α-Al2O3–sol–gel where only NiAl2O4 was formed, suggesting that the electronic properties of Pd may be modified.  相似文献   

2.
Coral-like nanostructured α-Mn2O3 nanocrystals were prepared by oxidative decomposition of MnCO3, exhibiting tremendous activity in the catalytic combustion of methane. This prepared α-Mn2O3 nanocrystals showed ultra-high stability during reaction while the structure feature was unaffected. The ultra-stable structure of the α-Mn2O3 catalyst has been demonstrated by characterization of SEM, XPS, XRD, Raman spectroscopy. The performance of the α-Mn2O3 nanocrystals has proven reproducible and potentially to be an applied catalyst for methane combustion.  相似文献   

3.
Co-precipitation, impregnation and ultrasonic sol–gel (USG) methods have been used to prepare Cu–Cr–Fe/γ-Al2O3 catalysts, which were further used to synthesize 2-methylpiperazine. The catalysts were characterized by XRD, XPS, TG/DSC, BET, TPR, AAS and TEM. It is found that preparation method can greatly impact the catalytic performance of the catalysts, the Cu–Cr–Fe/γ-Al2O3 catalyst prepared by the ultrasonic sol–gel method proved to be the most active and stable for this reaction. The dispersion and stabilization of Cu0 in the reduced catalysts are attributed to the existence of CuCr2O4 and Fe2O3. A surprising copper migration was detected by XPS analysis for the Cu–Cr–Fe/γ-Al2O3-USG catalyst after the calcination process, which may be crucial to the high activity and stability of this catalyst.  相似文献   

4.
The influence of CO2 on the deactivation of Co/γ-Al2O3 Fischer–Tropsch (FT) catalyst in CO hydrogenation has been investigated. The presence of CO2 in the feed stream reveals a negative effect on catalyst stability and in the formation of heavy hydrocarbons. The CO2 acts as a mild oxidizing agent on cobalt metal during Fischer–Tropsch synthesis. During FT synthesis on Co/γ-Al2O3 of 70 h, the CO conversion and C5+ selectivity in the presence of CO2 decreased more significantly than in the absence of CO2. CO2 is found to be responsible for the partial oxidation of surface cobalt metal at FT synthesis environment with the co-existence of generated water.  相似文献   

5.
The sintering kinetics of α-Al2O3 powder are reviewed in this paper. The initial sintering of α-Al2O3 micropowder and α-Al2O3 nanopowder is all controlled by grain boundary diffusion. The sintering kinetics dominate up to a relative density of 0.77, where the coarsening kinetics dominate during further densification. Herring's scaling law can be used to predict the approximate sintering temperature of α-Al2O3 powder and demonstrates that if the particle size can be reduced to <20 nm, sintering below 1000°C may be possible. ©  相似文献   

6.
A Pt/γ-Al2O3 catalyst was tested in simultaneous hydrodesulfurization (HDS) of dibenzothiophene and hydrodearomatization (HDA) of naphthalene reactions. Samples of it were subjected to different pretreatments: reduction, reduction–sulfidation, sulfidation with pure H2S and non-activation. The reduced catalyst presented the best performance, even comparable to that of Co(Ni)Mo catalysts. All catalyst samples were selective to the HDS reaction over HDA, and to the direct desulfurization pathway of dibenzothiophene HDS over the hydrogenation reaction pathway of HDS. The effect of H2S partial pressure on the functionalities of the reduced Pt/γ-Al2O3 catalyst was studied. The results showed that an increase in H2S partial pressure does not cause poisoning, but an inhibition effect, without changing the catalyst selectivity. Accordingly, the activity trends were ascribed to adsorption differences between the different reactive molecules over the same catalytic active site. TPR characterization along with a thermodynamics analysis showed that the active phase of reduced Pt/γ-Al2O3 is constituted by Pt0 particles. However, presulfidation of the catalyst leads to a mixture of PtS and Pt0 which has a negative effect on the catalytic performance without changing catalyst functionalities.  相似文献   

7.
BACKGROUND: A highly stable Fe/γ‐Al2O3 catalyst for catalytic wet peroxide oxidation has been studied using phenol as target pollutant. The catalyst was prepared by incipient wetness impregnation of γ‐Al2O3 with an aqueous solution of Fe(NO3)3· 9H2O. The influence of pH, temperature, catalyst and H2O2 doses, as well as the initial phenol concentration has been analyzed. RESULTS: The reaction temperature and initial pH significantly affect both phenol conversion and total organic carbon removal. Working at 50 °C, an initial pH of 3, 100 mg L?1 of phenol, a dose of H2O2 corresponding to the stoichiometric amount and 1250 mg L?1 of catalyst, complete phenol conversion and a total organic carbon removal efficiency close to 80% were achieved. When the initial phenol concentration was increased to 1500 mg L?1, a decreased efficiency in total organic carbon removal was observed with increased leaching of iron that can be related to a higher concentration of oxalic acid, as by‐product from catalytic wet peroxide oxidation of phenol. CONCLUSION: A laboratory synthesized γ‐Al2O3 supported Fe has shown potential application in catalytic wet peroxide oxidation of phenolic wastewaters. The catalyst showed remarkable stability in long‐term continuous experiments with limited Fe leaching, < 3% of the initial loading. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
The hydrogenation of trans,4-phenyl,3-buten,2-one (benzalacetone) and trans,3-phenyl, propenal (cinnamaldehyde) was carried out on Au supported on iron oxides catalysts. Commercial goethite (FeOOH), maghemite (γFe2O3) and hematite (αFe2O3) were used as supports. The catalytic activity of Au/Fe2O3 reference catalyst, supplied by the World Gold Council, was also investigated. Gold catalysts and the parent supports were characterized by BET, X-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed desorption of ammonia (NH3-TPD) and high resolution transmission electron microscopy (HRTEM).Among the catalysts investigated Au supported on FeOOH shows the highest activity and selectivity to UA in the hydrogenation of unsaturated carbonyl compounds whereas Au supported on αFe2O3 are the less active and selective catalysts.The catalytic activity and selectivity to unsaturated alcohols (UA) in the hydrogenation of benzalacetone and cinnamaldehyde are less influenced by the morphology of gold particles and are mainly influenced by the nature of the support.A correlation between the reducibility of the catalysts and the activity and selectivity to UA has been found. Increasing the reducibility of the catalysts both the activity and selectivity to UA increase. These results let us to argue that active and selective sites are formed by negative gold particles formed through the electron transfer from the reduced support to the metal.  相似文献   

9.
Photoassisted Fenton mineralisation of two azo dyes Direct Red 23 (DR 23) and Reactive Orange 4 (RO 4) was studied in detail using a Fe(II) loaded Al2O3 as a heterogeneous catalyst in presence of H2O2 and UV-A light. 25 and 15% FeSO4 loaded Al2O3 show the maximum efficiency in the degradation of DR 23 and RO 4 respectively. The effects of catalyst loading, H2O2 concentration, initial solution pH and initial dye concentration on photodegradation were investigated and the optimum conditions are reported. DR 23 undergoes easy degradation when compared to RO 4. The difference is due to the presence of stable triazine ring system in RO 4. The catalyst is reusable and the leaching of Fe(II) from the catalyst in each run is less than 10% in the pH range 2–7.  相似文献   

10.
The polymer-supported bimetallic catalyst system PVP–PdCl2–CuCl2/PPh3 has good conversion and regioselectivity to carbonylation of α-(6′-methoxy-2′-naphthyl)ethanol under mild conditions. The effects of temperature, CO pressure, reaction time and P/Pd ratio have been studied to obtain optimum reaction conditions. The carbonylation of various α-arylethanols and styrene derivatives are also investigated with the same catalyst. X-ray photoelectron spectroscopy (XPS) and transmission electron micrograph (TEM) show that the polymer would protect palladium particles against aggregation and serve as a ligand.  相似文献   

11.
Photodegradation of phenol was investigated with two types of oxidant agents in water, oxygen and hydrogen peroxide, at two different reaction pH with a series of nanosized iron-doped anatase TiO2 catalysts with different iron contents. The catalysts have been prepared by a sol–gel/microemulsion method. Firstly, iron-doped titania catalysts were studied with respect to their activity behavior when oxygen was used as oxidant agent in the photocatalytic degradation of aqueous phenol in comparison with un-doped reference catalysts. Secondly, two catalysts (TiO2 and 0.7 wt.% Fe-doped TiO2) were selected to extend the study for the employment of hydrogen peroxide as oxidant at different concentrations and two initial reaction pHs. An enhancement of the photocatalytic activity is observed only for relatively low doping level (ca. 0.7 wt.%) in catalyst calcined at 450 °C preferably using hydrogen peroxide as oxidant agent which is attributable to the partial introduction of Fe3+ cations into the anatase structure. Nevertheless, it has been demonstrated that catalyst surface properties can play an important role during phenol photodegradation process on the basis of the analysis of differences found in the photoactivity as a function of reaction pH.  相似文献   

12.
Using Mn(NO3)2 and ozone as raw materials, β-MnO2 nanowires with diameters of about 6–12 nm, lengths of 2–5 μm and surface area of 73.54 m2 g−1 were synthesized by a simple hydrothermal process. The influences of synthesis conditions such as hydrothermal temperature, reaction time and ozone were investigated, and the growth process of β-MnO2 nanowires was discussed. The catalytic properties of β-MnO2 nanowires for the degradation of phenol were evaluated. β-MnO2 nanowires revealed good separability and remarkable catalysis for the degradation of phenol.  相似文献   

13.
Catalytic conversion of CO2 to liquid fuels has the benefit of reducing CO2 emission. Adsorption and activation of CO2 on the catalyst surface are key steps of the conversion. Herein, we used density functional theory (DFT) slab calculations to study CO2 adsorption and activation over the γ-Al2O3-supported 3d transition metal dimers (M2/γ-Al2O3, M = Sc–Cu). CO2 was found to adsorb on M2/γ-Al2O3 negatively charged and in a bent configuration, indicating partial activation of CO2. Our results showed that both the metal dimer and the γ-Al2O3 support contribute to the activation of the adsorbed CO2. The presence of a metal dimer enhances the interaction of CO2 with the substrate. Consequently, the adsorption energy of CO2 on M2/γ-Al2O3 is significantly higher than that on the γ-Al2O3 surface without the metal dimer. The decreasing binding strength of CO2 on M2/γ-Al2O3 as M2 changes from Sc2 to Cu2 was attributed to decreasing electron-donation by the supported metal dimers. Hydroxylation of the support surface reduces the amount of charge transferred to CO2 for the same metal dimer and weakens the CO2 chemisorption bonds. Highly dispersed metal particles maintained at a small size are expected to exhibit good activity toward CO2 adsorption and activation.  相似文献   

14.
15.
Transforming growth factor-β1 (TGF-β1) occurs at high levels at damage sites of vascular endothelial cell layers and regulates the functions of vascular endothelial cells. Reactive sulfur species (RSS), such as cysteine persulfide, glutathione persulfide, and hydrogen persulfide, are cytoprotective factors against electrophiles such as reactive oxygen species and heavy metals. Previously, we reported that sodium trisulfide, a sulfane sulfur donor, promotes vascular endothelial cell proliferation. The objective of the present study was to clarify the regulation and significance of RSS synthesis in vascular endothelial cells after exposure to TGF-β1. Bovine aortic endothelial cells in a culture system were treated with TGF-β1 to assess the expression of intracellular RSS, the effect of RSS on cell proliferation in the presence of TGF-β1, induction of RSS-producing enzymes by TGF-β1, and intracellular signal pathways that mediate this induction. The results suggest that TGF-β1 increased intracellular RSS levels to modulate its inhibitory effect on proliferation. The increased production of RSS, probably high-molecular-mass RSS, was due to the induction of cystathionine γ-lyase and cystathionine β-synthase, which are RSS-producing enzymes, and the induction was mediated by the ALK5-Smad2/3/4 and ALK5-Smad2/3-ATF4 pathways in vascular endothelial cells. TGF-β1 regulates vascular endothelial cell functions such as proliferation and fibrinolytic activity; intracellular high-molecular-mass RSS, which are increased by TGF-β1, may modulate the regulation activity in vascular endothelial cells.  相似文献   

16.
The effects of incorporating tungsten into the traditional Co–Mo–K/γ–Al2O3 catalysts on the catalytic performances for water–gas shift reaction were investigated. Activity tests showed that W-promoted Co–Mo–K/γ–Al2O3 catalysts exhibited higher activity than W-free Co–Mo–K/γ–Al2O3 catalyst. Raman and H2-TPR studies indicated that part of the octahedrally coordinated Mo–O species on Co–Mo–K catalysts transformed into tetrahedrally coordinated Mo–O species in the presence of W promoter.  相似文献   

17.
Chaoquan Hu   《Catalysis communications》2009,10(15):2008-2012
Ultrafine Cu0.1Ce0.5Zr0.4O2−δ catalyst operated in a fluidized bed reactor was found to be very effective for complete oxidation of dilute benzene in air. The complete conversion of benzene could be achieved at reaction temperature as low as 220 °C. The mechanism of benzene oxidation over the Cu0.1Ce0.5Zr0.4O2−δ catalyst was investigated by conducting pulse reaction of pure benzene in the absence of O2 over the catalyst and the results indicated the involvement of lattice oxygen from the catalyst in benzene oxidation.  相似文献   

18.
One of the mechanisms by which PI3 kinase can regulate platelet function is through phosphorylation of downstream substrates, including glycogen synthase kinase-3 (GSK3)α and GSK3β. Platelet activation results in the phosphorylation of an N-terminal serine residue in GSK3α (Ser21) and GSK3β (Ser9), which competitively inhibits substrate phosphorylation. However, the role of phosphorylation of these paralogs is still largely unknown. Here, we employed GSK3α/β phosphorylation-resistant mouse models to explore the role of this inhibitory phosphorylation in regulating platelet activation. Expression of phosphorylation-resistant GSK3α/β reduced thrombin-mediated platelet aggregation, integrin αIIbβ3 activation, and α-granule secretion, whereas platelet responses to the GPVI agonist collagen-related peptide (CRP-XL) were significantly enhanced. GSK3 single knock-in lines revealed that this divergence is due to differential roles of GSK3α and GSK3β phosphorylation in regulating platelet function. Expression of phosphorylation-resistant GSK3α resulted in enhanced GPVI-mediated platelet activation, whereas expression of phosphorylation-resistant GSK3β resulted in a reduction in PAR-mediated platelet activation and impaired in vitro thrombus formation under flow. Interestingly, the latter was normalised in double GSK3α/β KI mice, indicating that GSK3α KI can compensate for the impairment in thrombosis caused by GSK3β KI. In conclusion, our data indicate that GSK3α and GSK3β have differential roles in regulating platelet function.  相似文献   

19.
The influence of the O2 pretreatment on the CO2 reforming of methane to synthesis gas has been investigated with Ni catalysts supported on β-SiC extrudate. The structure and properties of the catalysts were characterised by SEM, TEM and XRD techniques. The pretreatment of the catalyst by a mixture of CO2 and O2 significantly improves the catalytic activity for the CO2 reforming. On the Ni 5 wt.% supported on β-SiC catalyst, the CH4 conversion has reached 90% with the O2 pretreatment instead of 80% by direct activation under CO2/CH4 mixture. The oxygen pretreatment seems to stabilize the metallic nickel phase instead of NiSi2.  相似文献   

20.
Chiral bioinspired iron complexes of N4 ligands based on the ethylenediamine backbone display remarkable levels of enantioselectivity for the first time in the asymmetric epoxidation of α,β‐unsaturated ketones using hydrogen peroxide (up to 87% ee) or peracetic acid as oxidant, respectively. Notablely, isotopic labeling with H218O strongly demonstrated that there is a reversible water binding step prior to generation of the significant intermediate. Besides, the complex [L2Fe(III)2(μ‐O)(μ‐CH3CO2)]3+ usually derived from the decay of the LFe(IV)O species or thermodynamic sinks for a number of iron complexes was identified by HR‐MS. In addition, the possible mechanisms were proposed and LFe(V)O species may be the main active intermediate in the catalytic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号