首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Based on investigations of the mechanism of precision surface formation in workpieces of anisotropic monocrystalline materials for optoelectronics, a generalized model of material removal in polishing with suspensions of polishing powders has been constructed. The removal rate in polishing sapphire planes of different crystallographic orientations has been found to grow in the series m < c < a < r with increasing volume, surface area, and most probable size of debris particles as well as with energy of dispersion of material from the face being polished.  相似文献   

2.
MnGa films are the promising magnetic recording materials and spintronic materials owing to their intrinsic properties, such as large magnetic anisotropy, high coercivity, moderate magnetization, and high spin polarization. In this paper, MnGa films with high coercivity and low surface roughness have been successfully fabricated onto MgO substrates by magnetron sputtering and post-annealing. Moreover, the effects of post-annealing temperature (T a) on crystalline structure, surface morphology, and magnetic performances of MnGa films have also been investigated. It is found that the crystallization temperature for MnGa films is 400 °C. With increasing T a, the crystallization degree enhances and an in-plane texture is formed. The grain size and surface roughness of MnGa films increase slowly when T a is below 500 °C, but they exhibit a rapid rise when T a is above 500 °C. As T a increases, the coercivity (H c) and remanence squareness ratio (S) for MnGa films improve monotonically, whereas saturation magnetization (M s) increases firstly and then drops. The increases in H c, S, and M s with T a are attributed to the grains’ growth and the improvement of crystallinity, and the decrease of M s at higher T a possibly is due to the partial oxidation of Mn.  相似文献   

3.
Single crystals of four Ln2TiO5 polymorphs have been grown, and their structures have been determined: orthorhombic (Gd2TiO5, a = 10.460(5), b = 11.317(6), c = 3.750(3) Å, Pnam, Z = 4), hexagonal (Gd1.8Lu0.2TiO5, a = 3.663(3), c = 11.98(1) Å, P63/mmc, Z = 1.2), cubic (Dy2TiO5, a = 10.28(1) Å, Fd3m, Z = 10.4), and monoclinic (Dy2TiO5, a = 10.33(1), b = 3.653(5), c = 7.306(6) Å, β = 90.00(7)°, B2/m, Z = 2.4). The last polymorph has been identified for the first time.  相似文献   

4.
X-ray diffraction data are presented for combustion products in the Al-W-N system. New, nonequilibrium intermetallic compounds have been identified, their diffraction patterns have been indexed, and their unit-cell parameters have been determined. The phases α-and β-WAl4 are shown to exist in three isomorphous forms, differing in unit-cell centering. The phases α′-, α″-, and α?-WAl4 are monoclinic, with a 0 = 5.272 Å, b 0 = 17.770 Å, c 0 = 5.218 Å, β = 100.10°; point groups C12/c1, A12/n1, I12/a1, respectively. The phases β′-, β″-, and β?-WAl4 are monoclinic, with a 0 = 5.465 Å, b 0 = 12.814 Å, c 0 = 5.428 Å, β = 105.92°; point groups A112/m, B112/m, I112/m, respectively. The compounds WAl2 and W3Al7, identified each in two isomorphous forms, differ in cell metrics (doubling) but possess the same point group: P222. WAl 2 : orthorhombic, a 0 = 5.793 Å, b 0 = 3.740 Å, c 0 = 6.852 Å. WAl 2 : orthorhombic, a 0 = 11.586 Å, b 0 = 3.740 Å, c 0 = 6.852 Å. W3Al 7 : orthorhombic, Pmm2, a 0 = 6.225 Å, b 0 = 4.806 Å, c 0 = 4.437 Å. W3Al 7 : orthorhombic, Pmm2, a 0 = 12.500 Å, b 0 = 4.806 Å, c 0 = 8.874 Å. The new phase WAl3: triclinic, P1, a 0 = 8.642 Å, b 0 = 10.872 Å, c 0 = 5.478 Å, α = 104.02°, β = 64.90°, γ = 107.15°.  相似文献   

5.
Rare-earth analogs of the mineral bournonite, PbCuSbS3, have been synthesized for the first time and their physicochemical properties have been studied. PbCuSbS3, EuCuSbS3, YbCuSbS3, PbCuLaS3, and PbCuNdS3 are isostructural with each other and crystallize in orthorhombic symmetry with the following unit-cell parameters: a = 8.176, b = 8.660, c = 7.796 Å (PbCuSbS3); a = 8.156, b = 8.68, c = 7.786 Å (EuCuSbS3); a = 8.15, b = 8.64, c = 7.76 Å (YbCuSbS3); a = 8.26, b = 8.84, c = 7.96 Å (PbCuLaS3); a = 8.20, b = 8.80, c = 7.92 Å (PbCuNdS3) (Z = 4, sp. gr. Pmn21).  相似文献   

6.
Single crystals of rare-earth analogs of the mineral krupkaite, CuPbBi3S6, have been prepared for the first time, and their physicochemical properties have been studied. The compounds CuYbBi3S6, CuEuEr3S6, CuYbEr3S6, and CuPbEr3S6 are isostructural with CuPbBi3S6 and crystallize in orthorhombic symmetry (sp. gr. Pb21 m, Z = 2): a = 11.204, b = 11.376, c = 3.960 Å (CuYbBi3S6); a = 11.244, b = 11.440, c = 3.998 Å (CuEuEr3S6); a = 11.30, b = 11.55, c = 4.03 Å (CuPbEr3S6); a = 11.236, b = 11.414, c = 3.98 Å (CuYbEr3S6).  相似文献   

7.
Fermi energies (E Fs) of high- T c superconductors (SCs) have of late been evincing considerable interest because they are believed to be the cause of their high T cs and gap structures. Since Bardeen-Cooper-Schrieffer (BCS) equations for elemental and generalized-BCS equations for non-elemental SCs are derived under the blanket of the assumption E F/ k θ > > 1 (k = Boltzmann constant, θ = Debye temperature), they cannot shed light on the E Fs of these SCs. This fact leads us to address the gaps (Δ0s) and T cs of both types of SCs via recently derived equations which incorporate E F as a variable. For the specification of the E F of any SC, we now need another of its properties. Choosing j 0, the critical current density of the SC at T = 0, and following an idea due to Pines, we present for both types of SCs new equations for j 0 that depend solely on the following properties of the SC: E F, θ, gram-atomic volume, electronic specific heat constant and a dimensionless construct \(y=k\theta \sqrt {2m\ast } \text {/}P_{\text {0}} \sqrt {E_{\mathrm {F}} } \text {,}\) where m* is the effective mass of superconducting electrons and P 0 their critical momentum. Appeal to the experimental values of Δ0, T c and j 0 of any SC then not only leads to values of E F, m* and P 0 but also provides plausible clues about how its j 0—and therefore T c—may be increased.  相似文献   

8.
Monte Carlo (MC) simulation method with the Metropolis algorithm is used to study the magnetic and thermal phase transition properties of a spherical nanoparticle. The system consists of two concentric spheres of rays R C and R S, respectively (R c < R s). For r < R c, the spin is σ = ±3 /2 and ±1 /2, and for R C < rR S, the spin is S = ±7 /2, + 5/2, ±3 /2, and ±1 /2 with antiferromagnetic interface coupling. Between R C and R S, the sites are populated with the probability (p). We present a detailed discussion on the magnetic and thermal phase transition characteristics of the system under consideration. Our investigations show that this system can be used as a magnetic nanostructure possessing potential applications in magnetism.  相似文献   

9.
The phase equilibria in the pseudoternary systems CuSbS2-MS (M = Pb, Eu, Yb) have been studied, and their phase diagrams have been mapped out. The systems contain MCuSbS3 sulfides with an orthorhombic lattice, isostructural with the mineral bournonite (sp. gr. Pmn21, Z = 4). PbCuSbS3: a = 8.162, b = 8.71, c = 7.81 Å; EuCuSbS3: a = 8.156, b = 8.682, c = 7.786 Å; YbCuSbS3: a = 8.150, b = 8.664, c = 7.78 Å.  相似文献   

10.
A method is presented that allows quantifying the average value of the interaction field in arrays of magnetic nanowires from the field difference between the isothermal remanence (IRM) and the DC demagnetizing (DCD) remanence curves when the normalized magnetization is equal to one third. Arrays of magnetic nanowires of different diameters and packing fractions are used to experimentally test the method. The results have been compared with those obtained using the method based on the difference between the remanence coercivity fields and with a mean-field expression for the interaction field, providing a very good agreement and thus validating the method. Additionally, it is shown that both the position (m0) and the shift along the magnetization axis of the intersection between the remanence curves with respect to the value of one third (δm = m0 ??1/3) provide qualitative information about the interaction field. The former indicates the type of interaction depending if the intersection is above (m0 >?1/3) or below (m0 <?1/3), which corresponds to a ferro or anti-ferro magnetic interaction, respectively. While for the latter, it is shown that the maximum deviation of the Delta-M plot from zero (ΔMmax) corresponds to three times the shift (ΔMmax =?3δm).  相似文献   

11.
In 1980, Binnig et al. reported tunneling measurements on Nb-doped SrTiO3, and interpreted their results as indicating two-band superconductivity in the bulk of SrTiO3. However, (1) effective masses determined from tunneling results in the normal state by Sroubek in 1969 and 1970 are much smaller than those determined by most other methods. The much smaller masses were attributed to properties of a surface layer by the present author in 1971. (2) The only other reports of two-band superconductivity in bulk SrTiO3 can be used to infer much smaller values for the band separations than found by Binnig et al. In this paper, we give an alternative explanation of the results of Binnig et al. in terms of superconductivity in a surface layer. We obtain fair fits to the band gaps versus Fermi energy for the two bands in the three samples where two surface subbands are occupied and to the temperature dependence of the gaps in one crystal, using a model with three adjustable interaction parameters, an adjustable energy for the phonons which dominate the pairing, and an adjustable ratio of the mean-field T c to the actual T c . We show results for a combined fit to the low-temperature band gaps and to the T-dependence in one crystal. The phonon energy which gives the best fit is 21 meV. This is probably an appropriate average over the three longitudinal polar modes and acoustic modes in the material. A large value of about two is found for the ratio T c m f /T c , and we conjecture that this arises because a band with a small Fermi energy, not seen in the tunneling results, plays a part in increasing T c m f /T c .  相似文献   

12.
This paper reports a study on the mechanical and tribological properties of ab- and a (b) c?planes of YBa2Cu3O7?δ single crystals. The single crystals were grown using a CuO-BaO self-flux method. The oxygenation effect on the mechanical and tribological properties of ab- and a (b) c?planes is reported. For the ab- plane, the hardness and elastic modulus were around 6 and 50 GPa, respectively. In this case, significant differences were not observed among the hardness and elastic modulus at different oxygenation states. However, the hardness and elastic modulus for as-grown and oxygenated YBa2Cu3O7?δ single crystals were different from that of the a (b) c?plane, and were observed to be slightly higher for the as-grown than for the oxygenated samples. For as-grown and oxygenated samples, we observed hardness values around 4.7 and 2.0 GPa, respectively. Regarding the elastic modulus, the values were 75 and 40 GPa, respectively. The indentation fracture toughness values on the ab- plane for the as-grown and oxygenated YBa2Cu3O7?δ single crystal were 3.7 ± 1.2 and 2.9 ± 1.2 MPa m1/2, respectively. For the ab- plane, the scratch resistance of the as-grown sample was higher than that of the oxygenated sample and the scratches under load were deeper for the oxygenated sample. As regards the a (b) c?plane, the scar features were seemingly constant through all the scratch lengths and the scratches under load were deeper and larger for the oxygenated than that for the as-grown sample.  相似文献   

13.
The effects of Ba 2+ doping on the electrical and magnetic properties of charge-ordered Pr0.6Ca0.4MnO3 were investigated through electrical resistivity and AC susceptibility measurements. X-ray diffraction data analysis showed an increase in unit cell volume with increasing Ba 2+ content indicating the possibility of substituting Ba 2+ for the Ca-site. Electrical resistivity measurements showed insulating behavior and a resistivity anomaly at around 220 K. This anomaly is attributed to the existence of charge ordering transition temperature, \(T^{\mathrm {R}}_{\text {CO}}\) for the x = 0 sample. The Ba-substituted samples exhibited metallic to insulator transition (MI) behavior, with transition temperature, T MI, increasing from ~98 K (x = 0.1) to ~122 K (x = 0.3). AC susceptibility measurements showed ferromagnetic to paramagnetic (FM-PM) transition for Ba-substituted samples with FM-PM transition temperature, T c, increasing from ~121 K (x = 0.1) to ~170 K (x = 0.3), while for x = 0, an antiferromagnetic to paramagnetic transition behavior with transition temperature, T N, ~170 K was observed. In addition, inverse susceptibility versus T plot showed a deviation from the Curie–Weiss behavior above T c, indicating the existence of the Griffiths phase with deviation temperature, T G, increasing from 160 K (x = 0.1) to 206 K (x = 0.3). Magnetoresistance, MR, behavior indicates intrinsic MR mechanism for x = 0.1 which changed to extrinsic MR for x > 0.2 as a result of Ba substitution. The weakening of charge ordering and inducement of ferromagnetic metallic (FMM) state as well as increase in both T c and T MI are suggested to be related to the increase of tolerance factor, τ, and increase of e g ?electron bandwidth as average ionic radius at A-site, <r A> increased with Ba substitution. The substitution may have reduced MnO6 octahedral distortion and changed the Mn–O–Mn angle which, in turn, promotes itinerancy of charge carrier and enhanced double exchange mechanism. On the other hand, increase in A-site disorder, which is indicated by the increase in σ 2 is suggested to be responsible for the widening of the difference between T c and T MI.  相似文献   

14.
The dependence of melting temperature T m on the size and shape of an n -dimensional nanocrystal of elementary single-component substance is studied. The nanocrystal has the form of an n-dimensional parallelepiped with a square base. The ratio of the length of side rib to the length of base rib (which is equal to f) defines the form of the system. It is demonstrated that, if the surface pressure is ignored, the value of T m decreases with isomorphic (f = const) decrease in the size of nanocrystal. In so doing, the more the value of form parameter f deviates from unity, the more appreciable the size dependence of T m will be. However, if the surface pressure (“Laplace pressure”) is taken into account in the case of decrease in size, the value of T m may vary significantly. In so doing, if the surface pressure compresses the nanocrystal, this leads to an increase in T m when its size decreases. In the case of stretching of nanocrystal by surface pressure, the drop of T m with isomorphic decrease in size increases. It is demonstrated that the surface pressure may both attenuate (at low values of T m ) and intensify (at high values of T m ) the dimensional oscillation of melting temperature. This variation of oscillation of dimensional dependence will be most pronounced for substances with high values of Grueneisen parameter. The variation of melting temperature with decreasing crystal dimension n is studied. It is demonstrated that, in the case of isomorphic decrease in the size of nanocrystal, the coefficient of thermal expansion at melting temperature increases and reaches a maximum, and the specific energies of activation processes and the surface energy decrease and reach a minimum.  相似文献   

15.
Samples of the quaternary chalcogenide compounds, CuNiGaSe3 and CuNiInSe3, prepared by direct fusion and annealing method, were characterized by X-ray powder diffraction. In each case, the crystal structure was refined using the Rietveld method. Both compounds were found to crystallize in the tetragonal system, space group P \(\bar 4\)2c (N°112), with unit cell parameter values a = 5.6213(1) Å, c = 11.0282(3) Å, V = 348.48(1) Å3 and a = 5.7857(2) Å, c = 11.6287(5) Å, V = 389.26(3) Å3 for CuNiGaSe3 and CuNiInSe3, respectively. These compounds have a normal adamantane structures and are isostructural with CuFeInSe3.  相似文献   

16.
The objectives of this study were to: (1) develop a new bioactive dental bonding agent with nanoparticles of amorphous calcium phosphate and dimethylaminohexadecyl methacrylate for tooth root caries restorations and endodontic applications, and (2) investigate biofilm inhibition by the bioactive bonding agent against eight species of periodontal and endodontic pathogens for the first time. Bonding agent was formulated with 5?% of dimethylaminohexadecyl methacrylate. Nanoparticles of amorphous calcium phosphate at 30?wt% was mixed into adhesive. Eight species of biofilms were grown on resins: Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Parvimonas micra, Enterococcus faecalis, Enterococcus faecium. Colony-forming units, live/dead assay, biomass, metabolic activity and polysaccharide of biofilms were determined. The results showed that adding dimethylaminohexadecyl methacrylate and nanoparticles of amorphous calcium phosphate into bonding agent did not decrease dentin bond strength (P?>?0.1). Adding dimethylaminohexadecyl methacrylate reduced the colony-forming units of all eight species of biofilms by nearly three orders of magnitude. The killing efficacy of dimethylaminohexadecyl methacrylate resin was: P. gingivalis?>?A. actinomycetemcomitans?>?P. intermedia?>?P. nigrescens?>?F. nucleatum?>?P. micra?>?E. faecalis?>?E. faecium. Dimethylaminohexadecyl methacrylate resin had much less biomass, metabolic activity and polysaccharide of biofilms than those without dimethylaminohexadecyl methacrylate (P?<?0.05). In conclusion, a novel dental adhesive was developed for root caries and endodontic applications, showing potent inhibition of biofilms of eight species of periodontal and endodontic pathogens, and reducing colony-forming units by three orders of magnitude. The bioactive adhesive is promising for tooth root restorations to provide subgingival margins with anti-periodontal pathogen capabilities, and for endodontic sealer applications to combat endodontic biofilms.  相似文献   

17.
A series of quasi-multilayers of YBa2Cu3O7?δ (YBCO)/Y2O3 specifically 70 × (m YBCO/n Y2O3) were prepared on SrTiO3 single crystal using pulsed-laser deposition (PLD) with a controlled deposition pulses of m = 40 and n = 2, 5, and 10 for YBCO and Y2O3, respectively. The x-ray diffraction patterns indicate that all the present quasi-multilayers exhibit good c-axis orientation. The angular dependence of critical current density (J c ) on applied magnetic field directions are systemically measured to study the anisotropic vortex pinning performances for those quasi-multilayers. It is revealed that compared with the pure YBCO films, the quasi-multilayers with n = 2, i.e., a proper constituent pulse of Y2O3, exhibits the enhanced vortex pinning abilities in all angles between c-axis orientation and the applied magnetic field direction. As well, such a quasi-multilayer film (n = 2) shows the higher lift factor J c (Θ)/ J c (90°) and much better vortex pinning properties at high fields and high temperatures, showing promising potential for coated conductor application.  相似文献   

18.
The correlation properties are studied of binary mixtures in the critical state of vaporization in external field. The investigations are based on the system of Percus-Yevick integral equations for pair correlation functions G αβ(r 1, r 2) and the theory of scaling in critical phenomena. Expressions are obtained for pair correlation functions and correlation radius R c , which are analyzed in various extreme cases.  相似文献   

19.
Two new U(VI) compounds, [((CH3)2CHNH3)(CH3NH3)][(UO2)2(CrO4)3] (1) and [CH3NH3][(UO2)· (SO4)(OH)] (2), were prepared by combining hydrothermal synthesis with isothermal evaporation. Compound 1 crystallizes in the monoclinic system, space group Р21, a = 9.3335(19), b = 10.641(2), c = 9.436(2) Å, β = 94.040(4)°. Compound 2 crystallizes in the rhombic system, space group Рbca, a = 11.5951(8), b = 9.2848(6), c = 14.5565(9) Å. The structures of the compounds were solved by the direct methods and refined to R1 = 0.041 [for 5565 reflections with Fo > 4σ(Fo)] and 0.033 [for 1792 reflections with Fo > 4σ(Fo)] for 1 and 2, respectively. Single crystal measurements were performed at 296 and 100 K for 1 and 2, respectively. The crystal structure of 1 is based on [(UO2)2(CrO4)3]2– layers, and that of 2, on [(UO2)(SO4)(OH)] layers. Both kinds of layers are constructed in accordance with a common principle and are topologically similar. Protonated isopropylamine and methylamine molecules are arranged between the layers in 1, and protonated methylamine molecules, in 2. Compound 1 is the second known example of a U(VI) compound templated with two different organic molecules simultaneously.  相似文献   

20.
CsNiP crystals were synthesized by hydrothermal technique and characterized by the X-ray diffraction method. This alkaline transition metal phosphide crystallizes in the hexagonal system with space groupP6 3/mmc and cell parameters,a = 7.173(2) Å,c = 5.944(9) Å,V = 264.87(7) Å3 andZ = 2. The final residual factor isR1 = 0.0362 for 206 reflections withI > 2σ(I).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号