共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
针对非线性非高斯的目标跟踪,传统的卡尔曼滤波和扩展卡尔曼滤波等算法将会出现滤波精度下降甚至发散的现象,提出了采用粒子滤波算法来解决非线性滤波问题;粒子滤波方法作为一种基于贝叶斯估计的非线性滤波算法,在处理非高斯非线性时变系统的参数估计和状态滤波问题方面有独到的优势,但是存在运算量大和实时性差的问题,因此提出了基于EKF的扩展粒子滤波;仿真结果表明:在强非线性非高斯环境下,PF算法的跟踪性能优于EKF算法,基于EKF的扩展粒子滤波能够取得较好的跟踪精度,并且能够有效的减少粒子滤波的运算量。 相似文献
3.
针对静电探测的数学模型结构复杂、强非线性以及实验测量数据存在极大不确定性的特点和传统粒子滤波(PF)算法存在的缺陷,提出了一种改进的粒子滤波(UPF)算法。该算法以无迹卡尔曼滤波(UKF)算法生成替代分布并从中采样,理论分析与仿真结果均表明,UPF算法能够提高静电探测系统目标跟踪的稳定性和精确性,解决了传统PF算法中以转换先验密度函数作为替代分布所引发的各种问题,具有较高的实用价值和广泛的应用前景。 相似文献
4.
5.
6.
基于粒子滤波器的多机动目标跟踪贝叶斯滤波算法研究 总被引:2,自引:0,他引:2
提出了一种新的基于粒子滤波器的贝叶斯滤波算法, 用于在非线性非高斯假设下跟踪多机动目标.对目标动态行为的已知描述构成了贝叶斯的先验知识.近来时序蒙特卡罗技术的发展, 特别是粒子滤波器算法, 使采用一个目标状态的集合对贝叶斯模型的后验知识进行建模和跟踪成为可能, 这个集合可以看作是这个后验密度函数的采样集合.这种新的贝叶斯滤波算法是粒子滤波器与划分采样技术和假设计算的有机结合.在与SIR/MCJPDA算法的比较仿真研究中, 证明该算法能够提高系统的跟踪性能. 相似文献
7.
8.
9.
基于粒子滤波的目标图像多特征融合跟踪方法 总被引:1,自引:0,他引:1
研究了序列图像中红外弱小目标的检测跟踪问题.基于多特征融合的小目标检测算法具有较好的检测性能和适应性,而粒子滤波则是一种处理非线性和非高斯动态系统状态估计的有效方法.结合两种算法的优点,提出了一种基于粒子滤波的目标图像多特征融合跟踪方法.从红外序列图像中提取了局部灰度均值对比度、局部梯度均值对比度、局部熵和灰度分布四个典型特征,根据各个特征对弱小目标检测的贡献,自适应地进行特征融合.在粒子滤波的框架下,将融合后的特征信息转化为粒子的权值,对红外弱小目标进行跟踪.仿真试验表明,该算法有着良好的检测与跟踪性能. 相似文献
10.
闪烁噪声下目标跟踪的改进粒子滤波算法 总被引:2,自引:0,他引:2
针对目标跟踪系统具有强非线性非高斯的特点,提出了一种强跟踪粒子滤波(STUPF)算法.该算法将无迹卡尔曼滤波器(UKF)与强跟踪滤波器(STF)相结合作为粒子滤波提议分布,具有在线调节滤波增益阵,提高滤波器跟踪突变状态的能力.在给出闪烁噪声统计模型的基础上,将STUPF应用在几种典型目标运动模型跟踪系统中,并同UKF和... 相似文献
11.
因GPS技术在楼群密集的城市不能单独完成定位,文中采用GPS/DTMB组合导航新方案,又针对传统二维机动模型的不足,研究三维下的平面变速转弯模型,并作为运动目标的机动模型,同时仿真对比分析不同粒子数目下的粒子滤波算法(PF)跟踪效果,结果表明,200个粒子的误差均值为4.590 6 m,400个粒子误差均值为2.377 6 m,滤波后的轨迹与真实轨迹基本重合,定位跟踪效果好,且粒子数目越多,误差均值、标准差、方差越小,即定位跟踪精度越高。证明了GPS/DTMB组合导航新方案的可行性。 相似文献
12.
探讨了目标运动分析中基本的非线性估计问题。介绍了粒子滤波的基本思想和免重采样高斯PF(GPF)算法的基本原理.特别针对空-海单站只测方位-多普勒TMA(BDO-TMA)问题应用GPF和EKF(扩展卡尔曼滤波)进行了对照研究,建立了问题的离散非线性滤波估计模型.设计了典型的应用场景,给出了MonteCarlo仿真运行结果;表明GPF具有更高的估计精度、更好的收敛特性和滤波一致性。 相似文献
13.
基于模糊控制交互式多模型粒子滤波的静电机动目标跟踪 总被引:1,自引:0,他引:1
针对交互式多模型粒子滤波算法(IMMPF)的精度不高,算法更新时间长,难以满足静电机动目标跟踪要求的问题,提出了一种新的基于模糊控制的交互式多模型粒子滤波算法(FIMMPF)。该算法先利用模糊控制方法实现实时调整交互式多模型算法中的转换概率矩阵,使与目标当前运动状态最接近的运动模型在混合产生这一采样时刻的初始状态向量里占有更大的比重。同时,为了提高基本粒子滤波算法的精度,减小算法更新时间,再利用中心差分扩展卡尔曼滤波算法产生基本粒子滤波的建议分布函数,实现对目标运动状态的更新。理论分析和仿真结果表明,所提出的算法能够以更高的定位精度,更小的计算量实现对静电机动目标的跟踪。 相似文献
14.
15.
16.
17.
18.
19.
20.
标准粒子滤波虽然能够实现简单场景下的目标跟踪,但在复杂场景下其性能较差,粒子权值退化是影响视觉跟踪的一个重要方面,为解决这一问题,从选择准确重要性建议分布函数入手,给出了基于EKF和UKF预测采样的粒子滤波视觉跟踪算法EKF-PF(EKF enhanced particle filtering)和UKF-PF(UKF enhanced particle filtering),并进行了一定改进,通过仿真实验表明:给出的跟踪算法能够很好地跟踪室内运动目标,并对光照变化,目标姿态变化具有良好的鲁棒性. 相似文献