共查询到19条相似文献,搜索用时 62 毫秒
1.
蚁群算法与免疫算法的融合及其在TSP中的应用 总被引:2,自引:0,他引:2
提出一种基于抗体片段局部最优搜索的克隆选择和蚁群自适应融合算法.引入混沌扰动来增加抗体种群的多样性,以提高蚁群算法的搜索能力;利用克隆扩增、免疫基因等相关算子的操作,增强了克隆选择算法搜索的效率;通过自适应控制参数,实现了克隆选择与蚁群优化的有机结合及局部最优搜索策略的应用,加快了收敛速度,克服了抗体种群早熟问题,提高了求解精度.仿真实验结果表明,该算法具有可靠的全局收敛性,较快的收敛速度. 相似文献
2.
一种求解TSP问题的改进蚁群算法 总被引:2,自引:0,他引:2
针对基本蚁群算法存在收敛速度慢,易陷于局部最优解等缺点,提出了一种求解旅行商(TSP)问题的改进蚁群算法.通过在基本蚁群算法中提出保留最优解和引入个体差异策略的改进方法,有效地抑制了算法收敛过程中的停滞现象,提高了全局搜索能力和解的质量.TSPLIB的实例验证了该改进算法的有效性. 相似文献
3.
针对基本蚁群算法存在收敛速度慢,易陷于局部最优解等缺点,提出了一种求解旅行商(TSP)问题的改进蚁群算法。通过在基本蚁群算法中提出保留最优解和引入个体差异策略的改进方法,有效地抑制了算法收敛过程中的停滞现象,提高了全局搜索能力和解的质量。TSPLIB的实例验证了该改进算法的有效性。 相似文献
4.
竞争合作型协同进化免疫算法及其在旅行商问题中的应用 总被引:2,自引:0,他引:2
为提高人工免疫算法的收敛性能,提出了一种竞争合作型协同进化免疫优势克隆选择算法(CCCICA).把生态学中的协同进化思想引入到人工免疫算法中,考虑了环境和子群间相互竞争的关系,子种群内部通过局部最优免疫优势,克隆扩增,自适应动态高频混合变异等相关算子的操作加快了种群亲和度成熟速度.把信息熵理论引入到算法中完善了种群的多样性.所有子种群共享同一高层优良库,并将其作为抗体子种群领导集合,对高层优良种群进行免疫杂交操作,通过迁移操作把优良个体返回到各子种群,实现了整个种群信息交流与协作.针对旅行商问题(traveling salesman problem,TSP)多个实例结果表明:与其它智能算法相比较该算法具有较好的性能. 相似文献
5.
6.
蚂蚁算法与免疫算法结合求解TSP问题 总被引:3,自引:0,他引:3
针对传统蚂蚁算法存在的加速收敛与早熟、停滞现象之间的矛盾,通过接种疫苗和免疫选择两个步骤完成免疫过程,并与蚂蚁算法相结合,设计出新颖的免疫蚂蚁算法,并将其应用于求解复杂的TSP问题.数值模拟表明,该算法可以有效地克服基本蚁群算法容易出现停滞现象的缺陷,具有更好的全局搜索能力和稳定性. 相似文献
7.
一种结合局部搜索策略的求解TSP的演化算法 总被引:4,自引:2,他引:4
介绍了一种结合局部搜索策略的求解流动旅行商问题(TSP)的演化算法。该算法的主要思想是将局部搜索策略在邻域内搜索的快速性与演化方法在全局搜索上的鲁棒性结合起来,从而跳离局部最优。将该算法用于TSPLIB中部分TSP实例上的试验结果表明:与传统的各种求解TSP的演化方法相比,该算法在获得全局最优解的精确度上有了一定的改善。 相似文献
8.
TSP问题模型应用广泛,其求解策略的研究具有重要的理论和实践意义.根据TSP问题的特点,借鉴无向完全图上最小生成树的生成过程,设计了一种启发式算法对TSP问题进行求解.该算法的基本思想是以无向完全图上不同最小生成树为基础,采用启发式的方法构造不同闭合回路,最后取最短闭合回路作为最优解.文中采用C语言编程,同时分析了算法的性能和时间复杂度,并进行了大量仿真计算.结果表明设计的算法能够有效求得TSP问题的优化解. 相似文献
9.
基于人工免疫原理,建立了一个基于免疫机制求解TSP问题的数学模型。在该模型中,定义了TSP问题中的抗原和抗体,描述了记忆细胞动态进化过程,并借鉴遗传算法中基因变异思想,提出了优势基因进化的GFE算法,结合生物免疫系统抗体浓度稳定原理,在克隆选择过程中实现了抗体集合的进化计算,快速有效地求解出问题的全局近似最优解。实验结果表明该算法对解决组合优化问题不仅可行,而且有较快的收敛速度和较强的全局搜索能力。 相似文献
10.
基于自适应多态免疫蚁群算法的TSP求解* 总被引:5,自引:0,他引:5
针对标准蚁群算法易于出现早熟停滞现象,提出了一种自适应多态免疫蚁群算法(adaptive polymorphic immune ant colony algorithm,PIACA)。通过设置多种状态蚁群及引入自适应多态蚁群竞争机制,PIACA算法能有效抑制收敛过程中的早熟停滞现象。将禁忌表中每只蚂蚁走过的路径视为抗体,对抗体运用局部最优搜索算法和免疫克隆选择算法进行高效优化,提高了解的质量。针对TSP实验结果表明,该算法在收敛速度及求解精度上均取得到了较好的效果。 相似文献
11.
免疫模拟退火算法求解TSP 总被引:2,自引:0,他引:2
文章介绍了免疫学的一些基本理论,然后在模拟退火算法及免疫算法的基础上,提出了一种新的免疫模拟退火算法求解TSP。通过对CHN144以及标准的TSPLIB中的PR1002的数据进行测试,结果表明该算法具有良好的性能。 相似文献
12.
旅行商问题的人工免疫算法 总被引:4,自引:0,他引:4
1 引言旅行商问题(TSP)是一个典型的有序组合优化问题,可以看成是许多领域内复杂工程优化问题的抽象形式。研究TSP问题的求解方法对解决复杂工程优化问题具有重要的参考价值。对于TSP问题,目前还没有完全有效的求解方法,但是,多年来人们一直在不停地探索。近年来,模拟自然界生物进化过程的求解TSP问题的方法不断见诸文献,但以基于 相似文献
13.
在用遗传算法求解TSP时,极易破坏已经发现的较短线路片段,从而使遗传算法的收敛变慢.为了保护较短的线路片段,遗传操作以基因和基因簇为单位进行,优良基因簇可完整地遗传到下一代.在获得第一个近似最优解后,粉碎已发现的基因簇并继续寻优,以期能够获得全局最优解.使用CHN144及TSPLIB中的数据进行试验,找到了CHN144问题的当前最优路径.通过对TSP225的实验获得了最短路径3859,优于目前已经公布的最短路径3916.实验表明,基于基因簇的算法具备3000个城市左右的寻优能力. 相似文献
14.
15.
基于混合杂交的遗传算法求解旅行商问题 总被引:4,自引:0,他引:4
通过混合使用多种杂交算子,提出了一种求解旅行商问题的新型遗传算法,并给出了实验验证。通过实验用该算法求解了城市数为50到100不等的旅行商问题,获得了比其它算法更精确或更接近最优的解,表明了算法的有效性。 相似文献
16.
17.
18.
计算机安全系统与生物免疫系统具有很多的相似性,它们都需要在不断变化的环境中维持自身的稳定性。提出复合免疫算法,并应用到入侵检测系统中,以保护网络安全。针对经典的人工免疫算法在性能上存在的缺陷进行了改进,完善了其核心算法——否定选择算法,在否定选择算法中加入了分段技术和关键位,避免了恒定的匹配概率导致的匹配漏洞,降低了系统漏检率。并将遗传算法中的克隆选择算法和改进的否定选择算法结合为复合免疫算法,提高了检测器生成的动态性和多样性。最后,通过数学理论分析与仿真实验模拟,验证了改进算法的有效性和可行性,并且与其它经典算法进行了比较,结果证明,改进算法可以提高系统性能。 相似文献