共查询到18条相似文献,搜索用时 46 毫秒
1.
蚁群算法与免疫算法的融合及其在TSP中的应用 总被引:2,自引:0,他引:2
提出一种基于抗体片段局部最优搜索的克隆选择和蚁群自适应融合算法.引入混沌扰动来增加抗体种群的多样性,以提高蚁群算法的搜索能力;利用克隆扩增、免疫基因等相关算子的操作,增强了克隆选择算法搜索的效率;通过自适应控制参数,实现了克隆选择与蚁群优化的有机结合及局部最优搜索策略的应用,加快了收敛速度,克服了抗体种群早熟问题,提高了求解精度.仿真实验结果表明,该算法具有可靠的全局收敛性,较快的收敛速度. 相似文献
2.
一种求解TSP问题的改进蚁群算法 总被引:2,自引:0,他引:2
针对基本蚁群算法存在收敛速度慢,易陷于局部最优解等缺点,提出了一种求解旅行商(TSP)问题的改进蚁群算法.通过在基本蚁群算法中提出保留最优解和引入个体差异策略的改进方法,有效地抑制了算法收敛过程中的停滞现象,提高了全局搜索能力和解的质量.TSPLIB的实例验证了该改进算法的有效性. 相似文献
3.
针对基本蚁群算法存在收敛速度慢,易陷于局部最优解等缺点,提出了一种求解旅行商(TSP)问题的改进蚁群算法。通过在基本蚁群算法中提出保留最优解和引入个体差异策略的改进方法,有效地抑制了算法收敛过程中的停滞现象,提高了全局搜索能力和解的质量。TSPLIB的实例验证了该改进算法的有效性。 相似文献
4.
为提高人工免疫算法的收敛性能,提出了一种竞争合作型协同进化免疫优势克隆选择算法(CCCICA).把生态学中的协同进化思想引入到人工免疫算法中,考虑了环境和子群间相互竞争的关系,子种群内部通过局部最优免疫优势,克隆扩增,自适应动态高频混合变异等相关算子的操作加快了种群亲和度成熟速度.把信息熵理论引入到算法中完善了种群的多样性.所有子种群共享同一高层优良库,并将其作为抗体子种群领导集合,对高层优良种群进行免疫杂交操作,通过迁移操作把优良个体返回到各子种群,实现了整个种群信息交流与协作.针对旅行商问题(traveling salesman problem,TSP)多个实例结果表明:与其它智能算法相比较该算法具有较好的性能. 相似文献
5.
6.
一种结合局部搜索策略的求解TSP的演化算法 总被引:4,自引:2,他引:4
介绍了一种结合局部搜索策略的求解流动旅行商问题(TSP)的演化算法。该算法的主要思想是将局部搜索策略在邻域内搜索的快速性与演化方法在全局搜索上的鲁棒性结合起来,从而跳离局部最优。将该算法用于TSPLIB中部分TSP实例上的试验结果表明:与传统的各种求解TSP的演化方法相比,该算法在获得全局最优解的精确度上有了一定的改善。 相似文献
7.
TSP问题模型应用广泛,其求解策略的研究具有重要的理论和实践意义.根据TSP问题的特点,借鉴无向完全图上最小生成树的生成过程,设计了一种启发式算法对TSP问题进行求解.该算法的基本思想是以无向完全图上不同最小生成树为基础,采用启发式的方法构造不同闭合回路,最后取最短闭合回路作为最优解.文中采用C语言编程,同时分析了算法的性能和时间复杂度,并进行了大量仿真计算.结果表明设计的算法能够有效求得TSP问题的优化解. 相似文献
8.
基于自适应多态免疫蚁群算法的TSP求解* 总被引:5,自引:0,他引:5
针对标准蚁群算法易于出现早熟停滞现象,提出了一种自适应多态免疫蚁群算法(adaptive polymorphic immune ant colony algorithm,PIACA)。通过设置多种状态蚁群及引入自适应多态蚁群竞争机制,PIACA算法能有效抑制收敛过程中的早熟停滞现象。将禁忌表中每只蚂蚁走过的路径视为抗体,对抗体运用局部最优搜索算法和免疫克隆选择算法进行高效优化,提高了解的质量。针对TSP实验结果表明,该算法在收敛速度及求解精度上均取得到了较好的效果。 相似文献
9.
10.
11.
Traveling salesman problem (TSP) is proven to be NP-complete in most cases. The genetic algorithm (GA) is improved with two local optimization strategies for it. The first local optimization strategy is the four vertices and three lines inequality, which is applied to the local Hamiltonian paths to generate the shorter Hamiltonian circuits (HC). After the HCs are adjusted with the inequality, the second local optimization strategy is executed to reverse the local Hamiltonian paths with more than 2 vertices, which also generates the shorter HCs. It is necessary that the two optimization strategies coordinate with each other in the optimization process. The two optimization strategies are operated in two structural programs. The time complexity of the first and second local optimization strategies are O(n) and O(n3), respectively. The two optimization strategies are merged into the traditional GA. The computation results show that the hybrid genetic algorithm (HGA) can find the better approximate solutions than the GA does within an acceptable computation time. 相似文献
12.
《Expert systems with applications》2014,41(16):7248-7258
In order to improve the performance of quantum interference crossover, a bi-direction quantum crossover is proposed based on the quantum jump theory. The proposed crossover is inspired by the principle of quantum mechanics. That is, when an electron drops from a higher energy level to a lower energy level, energy is released by the atom. Also, energy is absorbed when it moves from a lower energy level to a higher energy level. The bi-direction quantum crossover is combined with clonal selection algorithm (CSA) to further enhance the performance of CSA. The effectiveness of the method is tested on a class of traveling salesman problems (TSP) and engineering practical problems of holes machining path planning (HMPP). Experimental results show that the proposed algorithm achieves a good balance between exploration and exploitation, and outweighs other CSAs and heuristic algorithms in terms of convergence speed and robustness. 相似文献
13.
14.
A self-organizing neural network using ideas from the immune system to solve the traveling salesman problem 总被引:1,自引:0,他引:1
Most combinatorial optimization problems belong to the NP-complete or NP-hard classes, which means that they may require an infeasible processing time to be solved by an exhaustive search method. Thus, less expensive heuristics in respect to the processing time are commonly used. These heuristics can obtain satisfactory solutions in short running times, but there is no guarantee that the optimal solution will be found. Artificial Neural Networks (ANNs) have been widely studied to solve combinatorial problems, presenting encouraging results. This paper proposes some modifications on RABNET-TSP, an immune-inspired self-organizing neural network, for the solution of the Traveling Salesman Problem (TSP). The modified algorithm is compared with other neural methods from the literature and the results obtained suggest that the proposed method is competitive in relation to the other ones, outperforming them in many cases with regards to the quality (cost) of the solutions found, though demanding a greater time for convergence in many cases. 相似文献
15.
16.
17.
旅行商问题的人工免疫算法 总被引:4,自引:0,他引:4
1 引言旅行商问题(TSP)是一个典型的有序组合优化问题,可以看成是许多领域内复杂工程优化问题的抽象形式。研究TSP问题的求解方法对解决复杂工程优化问题具有重要的参考价值。对于TSP问题,目前还没有完全有效的求解方法,但是,多年来人们一直在不停地探索。近年来,模拟自然界生物进化过程的求解TSP问题的方法不断见诸文献,但以基于 相似文献
18.
求解TSP问题的自逃逸混合离散粒子群算法研究 总被引:3,自引:0,他引:3
通过对旅行商问题(TSP)局部最优解与个体最优解、群体最优解之间的关系分析,针对DPSO算法易早熟和收敛慢的缺点,重新定义了离散粒子群DPSO的速度、位置公式,结合生物界中物种在生存密度过大时个体会自动分散迁徙的特性和局部搜索算法(SEC)后,提出了一种新的自逃逸混合离散粒子群算法(SEHDPSO).自逃逸思想是一种确定性变异操作,能使算法中陷入局部极小区域的粒子通过自逃逸行为进行全局寻优,从而克服算法易早熟的缺陷.仿真结果表明,SEHDPSO算法比混合蚁群算法(ACS+2-OPT)具有更好的收敛性和搜索效率. 相似文献