首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Staling of breads baked in different ovens (microwave, infrared-microwave combination and conventional) was investigated with the help of mechanical (compression measurements), physicochemical (DSC, X-ray, FTIR) and rheological (RVA) methods. The effect of xanthan-guar gum blend addition on bread staling was also studied. Xanthan-guar gum blend at 0.5% concentration was used in bread formulation. The gums were mixed at equal concentrations to obtain the blend. After baking, the staling parameters of breads were monitored over 5 days storage. During storage, it was seen that hardness, retrogradation enthalpies, setback viscosity, crystallinity values, and FTIR outputs related to starch retrogradation of bread samples increased, whereas FTIR outputs related to moisture content of samples decreased significantly with time. The hardness, retrogradation enthalpy, setback viscosity, and crystallinity values of microwave-baked samples were found to be highest among other heating modes. Using IR-microwave combination heating made it possible to produce breads with similar staling degrees as conventionally baked ones in terms of retrogradation enthalpy and FTIR outputs related to starch retrogradation. Addition of xanthan-guar gum blend decreased hardness, retrogradation enthalpy and total mass crystallinity values of bread samples showing that staling was delayed.  相似文献   

2.
The effect of the amount of damaged starch in two different flours (wheat and triticale) on the bread quality and its behaviour during storage has been analysed. Two wheat and one triticale flour cultivars were milled in a disc mill to obtain different levels of damaged starch. Differential Scanning Calorimetry (DSC) and Rapid Visco Analyser (RVA) were used to characterize the flour properties and TA-XT2 textural analyses were made on breadcrumb. The effect of the damaged starch content on the bread firming, the amylopectin retrogradation and starch-pasting properties were studied in order to establish any relationship between damaged starch and bread staling. DSC analysis showed that the damaged starch content changed the thermal behaviour of flour–water mixtures: the higher the levels of damaged starch the lower the starch-gelatinization enthalpy and the higher the melting enthalpy of amylose–lipid complexes. The amount of amylopectin retrogradation and breadcrumb firming increased with the damaged starch content at the beginning of storage time; however, differences were decreasing at final storage time. The flour viscosity during pasting decreased as their damaged starch content increased.  相似文献   

3.
馒头硬化机理探讨   总被引:7,自引:1,他引:7  
详细分析了馒头在贮存过程中硬度和支链淀粉结晶的变化规律,研究表明,馒头中支链淀粉结晶、小麦蛋白质与淀粉分子之间的交互作用是影响馒头硬化的主要因子。具体讲,馒头中支链淀粉结晶速率加快或小麦蛋白质和淀粉之间的交互作用加强,会加速馒头的硬化,而改善馒头的比容可以延缓馒头的硬化。  相似文献   

4.
Normal and heat-treated barley, both as flour and waxy starch, were added at a concentration of 3% to a white wheat bread. The effect not only of selected additives, but also of laboratory- and industrial baking processes on stalling was evaluated. Laboratory baked breads with heat-treated barley flour differed from control breads with regard to water content, firmness and amylopectin retrogradation. The influence of water content on firmness increased with storage time. All laboratory baked breads with barley additives, except normal barley flour, were less firm after 7 days of storage as compared to the control although amylopectin retrogradation tended to increase. Improved water absorption, and consequently, increased water content and/or different water binding capacities of the flour/starch could explain these results. Industrial baking caused higher water losses, especially in breads containing additives, thus reducing the effects on amylopectin retrogradation and firmness.  相似文献   

5.
The effect of frozen storage time of par-baked bread on the bread crumb and staling of bread obtained after thawing and full baking is described. The moisture content, hardness and retrogradation enthalpy of the amylopectin were determined in the par-baked bread and in the full baked bread after 7, 14, 28 and 42 days of frozen storage at −25 °C. In addition, the effect of frozen storage on the crumb microstructure was analyzed by cryo scanning electron microscopy (Cryo-SEM). The moisture content of both partially and full baked bread decreased with the time of frozen storage. The crumb hardness of the par-baked bread after different periods of frozen storage was kept constant, while that of their full baked counterpart increased with the time of frozen storage. In both types of breads, the enthalpy of amylopectin retrogradation did not vary with the period of frozen storage. The staling, measured as hardness increase and amylopectin retrogradation, increased along the frozen storage. The changes observed on the frozen par-baked bread after thawing were attributed to the damage of bread structures produced by the ice crystallization, and the microstructure study support that conclusion.  相似文献   

6.
To clarify the physicochemical characterisation and water status of potato steamed bread (PSB) and wheat steamed bread (WSB) during the staling process, texture, amylopectin retrogradation, crystalline structure, water migration and microstructure were evaluated by texture analysis, differential scanning calorimetry, X-ray diffraction, nuclear magnetic resonance (1H NMR) and scanning electron microscopy (SEM). Results showed that starch molecules in PSB and WSB were recrystallised and formed B-type starch, which had a positive correlation with hardness and thermal enthalpy. Compared to WSB, PSB had a relatively low B-type crystallinity; moreover, a smaller decrease of free water in PSB was also detected in the NMR test, which indicated that more moisture can be used to plasticise crumb, thus contributing to a softer texture of PSB. SEM revealed that the amount and size of the cracks on the interface of starch and gluten matrix in WSB increased with the prolongation of storage time.  相似文献   

7.
Retrogradation of sweet potato amylose and amylopectin with narrow molecular weight distribution at different temperatures was investigated by X-ray diffraction (XRD). Atomic force microscope (AFM), scanning electron microscope (SEM) and light microscopy were combined to study the morphology of the molecular assemblies during retrogradation. Avrami equation was used to the retrogradation kinetics the of above starches by determining the crystallinity and the ratio of peak area of two distinctive peaks. It was found that only the ratio of peak area/total area at 2θ = ~16.3° could represent the crystallinity of retrograded starch-containing amorphous regions. Considering the crystallinity as retrogradation rate, only the retrogradation kinetics of sweet potato amylose could be analysed by Avrami equation, but not the amylopectin’s. All Avrami exponents n of amyloses at any temperatures were less than 1.0, indicating instantaneous nucleation and rod-like growth. AFM results showed that the maximum heights of layered structure for sweet potato amylose, amylopectin and blending of both were approximately 4800, 180 and 200 nm, respectively. The height of the former two decreased during storage, but the height of blending remained unchanged. Amylose served as nuclei of amylopectin during starch retrogradation.  相似文献   

8.
为了探究支链聚合度对淀粉老化的影响,利用差示扫描量热仪结合Avrami方程,研究不同支链聚合度菠萝蜜种子淀粉(jackfruit seed starch,JFSS)凝胶后贮藏过程中的老化焓变和老化动力学。结果表明:支链聚合度降低,JFSS凝胶后老化过程形成更多趋于有序排列的结晶,老化速率从0.336增加到0.513,不同聚合度JFSS成核方式为瞬间成核;随贮藏时间的延长,JFSS老化度增大;支链聚合度与Avrami指数呈显著正相关(p<0.05);支链重均聚合度与凝胶化焓呈极显著负相关(p<0.01),数均聚合度凝胶化焓呈显著负相关(p<0.05);支链重均聚合度与贮藏0~7 d的老化焓变均呈现显著负相关(p<0.05)。支链聚合度是影响淀粉贮藏过程中老化特性的重要结构因素。  相似文献   

9.
The use of gluten-free products is increasing since an increasing number of people (1–2 %) are suffering from Celiac disease and thereby need a gluten-free diet. Gluten-free bread tends to have shorter shelf life and quality compared with white wheat bread. In this study, 3 % (flour basis) of pre-gelatinized oat and barley flour as well as an emulsifier were added to a gluten-free mix to increase the water content by 1.5–2 %, affect the starch retrogradation and the formation of amylose lipid complex. The staling was followed measuring the firmness (texture analyzer), water content and distribution (nuclear magnetic resonance), amylopectin retrogradation and the formation of amylose–lipid complex (differential scanning calorimetry) in order to see the impact of both macroscopic and molecular changes on firmness. Both gluten-free bread and a white wheat bread were used as control loaves. Largest specific volume was found in the gluten-free control. The firmness varied with both the specific volume and the point of measurement. The amount of retrograded amylopectin increased the firmness, although this effect was dependent on the type of bread, in terms of distribution and availability of the water within the system. The proton relaxation time, which was representing movable water, decreased during storage and revealed that both the amylopectin retrogradation and the lipid complex formation were affecting the rigidity of the amorphous domain and not only the crystalline regions. In contrast to the other recipes, the use of emulsifier caused limited retrogradation and a low correlation between the texture properties and time-dependent events.  相似文献   

10.
 The effect of dextrins produced by α-amylase on the firming and amylopectin retrogradation of wheat starch gels was studied. Different gel samples were prepared and included several ingredients, for example, α-amylase, vital gluten and glucoamylase. Amylopectin retrogradation, gel firming and the dextrin profile were analysed throughout a 5-day storage period. Both processes, i.e. firming and starch retrogradation, increased with time, and were not affected by the incorporation of gluten into the mixture. The well-known effect of α-amylase to retard bread crumb firming was also found to be relevant to starch gels. From the results obtained in this work, it seems that this anti-firming effect is not due to modifications of the starch but to dextrins produced by starch hydrolysis, since the effect did not occur when dextrins were removed by glucoamylase. Received: 30 December 1996  相似文献   

11.
Anti-staling agents with different mechanisms were added to a normal white wheat bread to investigate the relation between bread staling, amylopectin retrogradation and water-related properties (i.e. water content and distribution between crumb and crust). Bread was baked both as pan-baked and freestanding loaves. The anti-staling agents maltogenic α-amylase, distilled monoglyceride and lipase had a direct influence on starch retrogradation, whereas gluten and waxy wheat flour diluted the amylopectin content or changed the ratio between amylose and amylopectin. The degree of staling was measured as the firmness and springiness, together with two new methods, crumbliness and cutability. In addition, the degrees of amylopectin retrogradation and amylose–lipid complex formation were analyzed by differential scanning calorimetry, and the water content, water loss and water migration were measured. The addition of α-amylase improved most staling parameters, although the changes were not as large as expected. Furthermore, monoglyceride and lipase increased the formation of amylose–lipid complexes, but only lipase gave better results regarding the specific volume and firmness. Increased amylose–lipid complex formation was seen to increase water migration from crumb to crust. Adding 10% waxy wheat flour appeared to lead to a slight overall improvement i.e. lower water migration and better cutability. Adding gluten or 3% waxy wheat flour only improved the specific volume. The method of baking the loaves, i.e. freestanding or pan-baked, had a greater influence than the anti-staling agents, which shows that bread quality is not always improved by starch affecting anti-staling agents without process changes.  相似文献   

12.
Effect of different carbohydrases on fresh bread texture and bread staling   总被引:5,自引:0,他引:5  
The effect of cellulase, xylanase and #-glucanase on the properties of wheat bread and its staling during storage was studied. The presence of the carbohydrases tested led to breads with high specific volume compared to the control. The texture profile analysis was greatly modified in that the firmness of bread crumb was reduced by all the carbohydrases. A kinetic study of the firmness along with the storage by the Avrami equation showed that the presence of carbohydrases produced softer crumbs and also reduced the rate of bread firming, although no great differences were found between enzymes. Since retrogradation of starch is one of most important factors related to bread staling, the modification of the amylopectin retrogradation was measured by scanning calorimetry. Those studies showed that all the carbohydrases decrease the starch retrogradation, and that the xylanases had the greatest effect. The simultaneous analysis of the firming and starch retrogradation results revealed that the anti-staling effect of xylanase might be due to the retardation in the starch retrogradation, while in the case of cellulase and #-glucanase some other mechanism should be implied in their anti-staling action.  相似文献   

13.
The effect of part-baking, freezing, frozen storage, thawing, rebaking on the aging behaviour of bread was evaluated. The amylopectin modification during the process was assessed by differential scanning calorimetry (DSC), while changes in bread quality were followed by crumb hardness measurements. During frozen storage no retrogradation of amylopectin was detected in the part-baked dough. When analysing the aging of the rebaked samples, it was observed that the time of frozen storage produced a progressive increase of the retrogradation temperature range of the amylopectin, and also great energy was required for amylopectin melting at longer storage period, indicating that structural changes of amylopectin were produced during frozen storage. Regarding the quality of the fresh bread resulted after rebaking, crumb hardness increase with the time of frozen storage, and also the hardening rate during aging was dependent on that time. Crumb hardness results of the fresh bread and also DSC studies indicate that some changes are produced during the frozen storage.  相似文献   

14.
Two baking times (9 and 24 min) and storage temperatures (4 and 25 °C) were used to explore the impact of heat exposure during bread baking and subsequent storage on amylopectin retrogradation, water mobility, and bread crumb firming. Shorter baking resulted in less retrogradation, a less extended starch network and smaller changes in crumb firmness and elasticity. A lower storage temperature resulted in faster retrogradation, a more rigid starch network with more water inclusion and larger changes in crumb firmness and elasticity. Crumb to crust moisture migration was lower for breads baked shorter and stored at lower temperature, resulting in better plasticized biopolymer networks in crumb. Network stiffening, therefore, contributed less to crumb firmness. A negative relation was found between proton mobilities of water and biopolymers in the crumb gel network and crumb firmness. The slope of this linear function was indicative for the strength of the starch network.  相似文献   

15.
Effects of sourdough and enzymes on staling of high-fibre wheat bread   总被引:1,自引:0,他引:1  
The effects of sourdough and enzyme mixture (α-amylase, xylanase and lipase) on the specific volume, staling and microstructure of wheat pan bread supplemented with wheat bran were studied. Staling of bread was followed for 6 days by measuring the crumb firmness, changes in crystallization of amylopectin (DSC), increase in signal from the solid phase (NMR) and by light microscopy. The most effective treatment in improvement of quality was the combination of bran sourdough and enzyme mixture. During storage the rate of changes in crumb firmness, amylopectin crystallinity and rigidity of polymers were greatest for the white wheat bread. The most pronounced microstructural changes were swelling of starch granules and separation of amylose and amylopectin in the starch granules. Least changes in crumb firmness, amylopectin crystallinity and rigidity of polymers were observed in bran sourdough bread with enzymes. In contrast to white wheat bread, the starch granules were very much swollen in bran sourdough bread with enzyme mixture. This was hypothesized to be due to the higher water content of bran bread, and degradation of cell wall components leading to altered distribution of water among starch, gluten and bran particles during storage.  相似文献   

16.
为研究板栗贮藏前后淀粉性质的变化,分别测定淀粉的凝沉性、冻融稳定性、透光率、结晶结构、直链与支链淀粉含量、粒度、糊化特性等。结果表明,贮藏后的板栗淀粉较贮藏前其淀粉糊的凝沉加快;冻融稳定性、透明度下降;淀粉颗粒结晶结构未发生变化,仍属于C型;糊化温度降低,峰值黏度上升,稳定性变差,更容易老化。贮藏后板栗淀粉的抗老化能力降低。  相似文献   

17.
The effects of chestnut flour and a xanthan–guar gum blend–DATEM mixture on staling of gluten-free rice breads baked in conventional and infrared–microwave combination ovens were studied. Staling properties of the bread were assessed using mechanical compression (TA), differential scanning calorimetry, X-ray diffraction, and fourier transform infrared spectroscopy (FT-IR). Hardness, moisture loss, and retrogradation enthalpy values for all bread samples increased significantly during storage. FT-IR spectra showed that the integrated area of peaks around 1,041 and 1,150 cm?1 wave lengths, which are related to the structure of starch retrogradation, increased with storage time. The X-ray diffractograms of aged breads indicated a B-type structure with the appearance of peaks at around 17°, 19.5°, and 22°. An additional peak at 24° was observed in breads stored for longer periods. Higher values of hardness and lower moisture contents were obtained for breads baked in an infrared–microwave combination oven, but the use of infrared–microwave combination oven did not result in excessive hardness after storage. Retrogradation enthalpies and total crystallinity values of breads did not show significant differences with baking type.The replacement of rice flour with chestnut flour and addition of xanthan–guar gum blend–DATEM mixture in formulations significantly delayed staling of gluten-free breads by decreasing moisture loss, hardness, retrogradation enthalpy, and total mass crystallinity.  相似文献   

18.
Partially baked bread is a product with short shelf life that requires sub-zero temperatures for extending it. The storage of par-baked bread at low temperatures and the addition of bread improvers with antistaling effects, such as hydroxypropylmethylcellulose (HPMC), are very attractive alternatives for extending the shelf life of these products. In this study, staling during storage of partially baked bread (in the presence and absence of HPMC) at low temperatures (2 °C) is studied in terms of hardness increase and amylopectin retrogradation. Simultaneously, the staling of the derived full baked breads when stored at 25 °C is assessed. During the storage of par-baked bread at low temperatures, progressive crumb hardening and rapid crystallization of the amylopectin chains were produced. However, heat applied during full baking reversed those processes, and the extent of that improvement was dependent on the time of par-baked bread storage. Concerning the staling of the derived full baked bread, the time of par-baked bread storage did not significantly (P < 0.05) affect the staling process of the resulting full baked breads. The addition of HPMC decreased the crumb hardness in both par-baked and full baked breads, and also promoted a reduction of the amylopectin retrogradation. Overall results indicate that HPMC addition significantly retards the staling of par-baked bread during its storage at low temperatures and, moreover, the same effect is observed in the full baked bread.  相似文献   

19.
Substitution of starch from barley, corn, oat, potato, rice or sorghum for prime wheat starch in the formulation of Arabic bread resulted in breads with significantly (P < 0.05) different textural attributes from regular wheat bread except for barley starch. Substitution of waxy barley starch (957 g kg−1 amylopectin) for wheat starch (279 g kg−1 amylopectin) resulted in bread that was not significantly different from regular wheat bread when assessed in the fresh state. However, upon aging, the waxy barley starch-containing bread staled at a significantly (P < 0.05) faster rate than regular wheat bread. Breads made with waxy barley starch cross-linked with 50, 200 or 500 ppm phosphorus oxychloride showed higher enthalpy of melting (ΔH) upon aging and staled faster than the bread formulated with waxy barley starch. These findings suggest that amylopectin retrogradation is one of the determinants of Arabic bread staling and that cross-linking promotes recrystallisation of amylopectin, possibly by keeping the polymer chains in close proximity. The rate of staling in breads formulated with cross-linked waxy barley starch decreased with increasing levels of cross-linking, possibly owing to restrictions in the degree of starch swelling. © 1999 Society of Chemical Industry  相似文献   

20.
The effect of hydroxypropylmethylcellulose (HPMC) addition on a basic bread formulation is described. The effect of HPMC as bread improver and antistaling agent was analysed in terms of microstructure. Bread quality was assessed by physical parameters (volume, width/height ratio, moisture content and hardness), crumb grain structure (number of air cells, cells area and the ratio between cells area and total area) and sensory evaluation (appearance, aroma, taste and texture). Bread staling was determined by following both the hardness increase and the starch retrogradation during storage. The microstructure was analyzed by cryo scanning electron microscopy (cryo-SEM). The results confirm the ability of the HPMC for improving fresh bread quality and for delaying staling. The presence of HPMC decreased the hardening rate of the bread crumb and also retarded the amylopectin retrogradation. The microstructure analysis revealed the possible interaction between the HPMC and the bread constituents, which could partially explain the antistaling effect of this hydrocolloid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号