首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分析了有限元/控制体积方法和流动分析网络技术两种算法的区别,结果表明:在三角形网格上两种算法是一致的,在矩形网格上流动分析网络技术(FAN)相对于传统的有限元/控制体积方法(FE/CVM)可以构造更精确的控制体积表面流率计算方案。算例研究表明:对于矩形网格流动分析网络技术预测的填充时间精度比传统的有限元/控制体积方法提高几倍左右。   相似文献   

2.
In this paper, a non‐local viscoelastic foundation model is proposed and used to analyse the dynamics of beams with different boundary conditions using the finite element method. Unlike local foundation models the reaction of the non‐local model is obtained as a weighted average of state variables over a spatial domain via convolution integrals with spatial kernel functions that depend on a distance measure. In the finite element analysis, the interpolating shape functions of the element displacement field are identical to those of standard two‐node beam elements. However, for non‐local elasticity or damping, nodes remote from the element do have an effect on the energy expressions, and hence the damping and stiffness matrices. The expressions of these direct and cross‐matrices for stiffness and damping may be obtained explicitly for some common spatial kernel functions. Alternatively numerical integration may be applied to obtain solutions. Numerical results for eigenvalues and associated eigenmodes of Euler–Bernoulli beams are presented and compared (where possible) with results in literature using exact solutions and Galerkin approximations. The examples demonstrate that the finite element technique is efficient for the dynamic analysis of beams with non‐local viscoelastic foundations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Higher‐resolution schemes are presented for convective flow approximation on highly distorted unstructured grids. The schemes are coupled with continuous full‐tensor Darcy‐flux approximations. A sequence of non‐uniform and distorted grid formulations are developed and compared for a range of unstructured meshes with variable grid spacing. The higher‐order schemes are constructed using non‐uniform grid slope limiters such that they are stable with a local maximum principle, ensuring that solutions are free of spurious oscillations. Benefits of the resulting schemes are demonstrated for classical test problems in reservoir simulation including cases with full‐tensor permeability fields. The test cases involve a range of unstructured grids with variations in grid spacing, orientation and permeability that lead to flow fields that are poorly resolved by standard simulation methods. The higher‐order formulations are shown to effectively reduce numerical diffusion, leading to improved resolution of concentration and saturation fronts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A simple boundary element method for solving potential problems in non‐homogeneous media is presented. A physical parameter (e.g. heat conductivity, permeability, permittivity, resistivity, magnetic permeability) has a spatial distribution that varies with one or more co‐ordinates. For certain classes of material variations the non‐homogeneous problem can be transformed to known homogeneous problems such as those governed by the Laplace, Helmholtz and modified Helmholtz equations. A three‐dimensional Galerkin boundary element method implementation is presented for these cases. However, the present development is not restricted to Galerkin schemes and can be readily extended to other boundary integral methods such as standard collocation. A few test examples are given to verify the proposed formulation. The paper is supplemented by an Appendix, which presents an ABAQUS user‐subroutine for graded finite elements. The results from the finite element simulations are used for comparison with the present boundary element solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
The choice of mesh generation and numerical solution strategies for two‐dimensional finite element models of fluvial flow have previously been based chiefly on experience and rule of thumb. This paper develops a rationale for the finite element modelling of flow in river channels, based on a study of flow around an annular reach. Analytical solutions of the two‐dimensional Shallow Water (St. Venant) equations are developed in plane polar co‐ordinates, and a comparison with results obtained from the TELEMAC‐2‐D finite element model indicates that of the two numerical schemes for the advection terms tested, a flux conservative transport scheme gives better results than a streamline upwind Petrov–Galerkin technique. In terms of mesh discretization, the element angular deviation is found to be the most significant control on the accuracy of the finite element solutions. A structured channel mesh generator is therefore developed which takes local channel curvature into account in the meshing process. Results indicate that simulations using curvature‐dependent meshes offer similar levels of accuracy to finer meshes made up of elements of uniform length, with the added advantage of improved model mass conservation in regions of high channel curvature. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, finite elements based on arbitrary convex and non‐convex polytopes are introduced. Polytopes in combination with natural element coordinates (NECs) permit a uniform element formulation of interpolation functions that are independent of the dimension of space, localization and the number of vertices. NECs based on the natural neighbor interpolation are restricted to the polytope and can be understood as an extension of the barycentric coordinates on simplexes. The differentiation and integration of these interpolation functions on the basis of NECs is essential for finite element approximations. The accuracy of the finite element interpolation or approximation can be controlled by either applying the h‐version or by utilizing the p‐version of the finite element method (FEM). Advantages in the handling of hanging nodes are discussed. Furthermore, we present construction methods for Lagrangian as well as for hierarchical interpolation functions based on NECs. Numerical experiments on different convex and non‐convex decompositions will show the usability, accuracy and convergence of the developed polytope FEM. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The dynamic explicit finite element method is commonly used in earthquake ground motion modeling. In this method, the element mass matrix is approximately lumped, which may lead to numerical dispersion. On the other hand, the orthogonal finite element method, based on orthogonal polynomial basis functions, naturally derives a lumped diagonal mass matrix and can be applied to dynamic explicit finite element analysis. In this paper, we propose finite elements based on orthogonal discontinuous basis functions, the element mass matrices of which are lumped without approximation. Orthogonal discontinuous basis functions are used to improve the accuracy and reduce the numerical dispersion in earthquake ground motion modeling. We present a detailed formulation of the 4‐node tetrahedral and 8‐node hexahedral elements. The relationship between the proposed finite elements and conventional finite elements is investigated, and the solutions obtained from the conventional explicit finite element method are compared with analytical solutions to verify the numerical dispersion caused by the lumping approximation. Comparison of solutions obtained with the proposed finite elements to analytical solutions demonstrates the usefulness of the technique. Examples are also presented to illustrate the effectiveness of the proposed method in earthquake ground motion modeling in the actual three‐dimensional crust structure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The aim of the paper is to study the capabilities of the extended finite element method (XFEM) to achieve accurate computations in non‐smooth situations such as crack problems. Although the XFEM method ensures a weaker error than classical finite element methods, the rate of convergence is not improved when the mesh parameter h is going to zero because of the presence of a singularity. The difficulty can be overcome by modifying the enrichment of the finite element basis with the asymptotic crack tip displacement solutions as well as with the Heaviside function. Numerical simulations show that the modified XFEM method achieves an optimal rate of convergence (i.e. like in a standard finite element method for a smooth problem). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
A stabilized, mixed finite element formulation for modelling viscoplastic flow, which can be used to model approximately steady‐state metal‐forming processes, is presented. The mixed formulation is expressed in terms of the velocity, pressure and state variable fields, where the state variable is used to describe the evolution of the material's resistance to plastic flow. The resulting system of equations has two sources of well‐known instabilities, one due to the incompressibility constraint and one due to the convection‐type state variable equation. Both of these instabilities are handled by adding mesh‐dependent stabilization terms, which are functions of the Euler–Lagrange equations, to the usual Galerkin method. Linearization of the weak form is derived to enable a Newton–Raphson implementation into an object‐oriented finite element framework. A progressive solution strategy is used for improving convergence for highly non‐linear material behaviour, typical for metals. Numerical experiments using the stabilization method with hierarchic shape functions for the velocity, pressure and state variable fields in viscoplastic flow and metal‐forming problems show that the stabilized finite element method is effective and efficient for non‐linear steady forming problems. Finally, the results are discussed and conclusions are inferred. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
A differential quadrature hierarchical finite element method (DQHFEM) is proposed by expressing the hierarchical finite element method matrices in similar form as in the differential quadrature finite element method and introducing interpolation basis on the boundary of hierarchical finite element method elements. The DQHFEM is similar as the fixed interface mode synthesis method but the DQHFEM does not need modal analysis. The DQHFEM with non‐uniform rational B‐splines elements were shown to accomplish similar destination as the isogeometric analysis. Three key points that determine the accuracy, efficiency and convergence of DQHFEM were addressed, namely, (1) the Gauss–Lobatto–Legendre points should be used as nodes, (2) the recursion formula should be used to compute high‐order orthogonal polynomials, and (3) the separation variable feature of the basis should be used to save computational cost. Numerical comparison and convergence studies of the DQHFEM were carried out by comparing the DQHFEM results for vibration and bending of Mindlin plates with available exact or highly accurate approximate results in literatures. The DQHFEM can present highly accurate results using only a few sampling points. Meanwhile, the order of the DQHFEM can be as high as needed for high‐frequency vibration analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A hybrid numerical scheme based on finite element and finite volume methods is developed to solve shallow water equations. In the recent past, we introduced a series of hybrid methods to solve incompressible low and high Reynolds number flows for single and two‐fluid flow problems. The present work extends the application of hybrid method to shallow water equations. In our hybrid shallow water flow solver, we write the governing equations in non‐conservation form and solve the non‐linear wave equation using finite element method with linear interpolation functions in space. On the other hand, the momentum equation is solved with highly accurate cell‐center finite volume method. Our hybrid numerical scheme is truly a segregated method with primitive variables stored and solved at both node and element centers. To enhance the stability of the hybrid method around discontinuities, we introduce a new shock capturing which will act only around sharp interfaces without sacrificing the accuracy elsewhere. Matrix‐free GMRES iterative solvers are used to solve both the wave and momentum equations in finite element and finite volume schemes. Several test problems are presented to demonstrate the robustness and applicability of the numerical method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Three non‐dispersive models in multi‐dimensions have been developed. The first model consists of a leading‐order homogenized equation of motion subjected to the secularity constraints imposing uniform validity of asymptotic expansions. The second, non‐local model, contains a fourth‐order spatial derivative and thus requires C1 continuous finite element formulation. The third model, which is limited to the constant mass density and a macroscopically orthotropic heterogeneous medium, requires C0 continuity only and its finite element formulation is almost identical to the classical local approach with the exception of the mass matrix. The modified mass matrix consists of the classical mass matrix (lumped or consistent) perturbed with a stiffness matrix whose constitutive matrix depends on the unit cell solution. Numerical results are presented to validate the present formulations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
This study presents a new scheme for performing integration point constitutive updates for anisotropic, small strain, non‐linear viscoelasticity, within the context of implicit, non‐linear finite element structural analysis. While the basic scheme has been presented earlier by the authors for linear viscoelasticity, the present work illustrates the generality of the underlying fundamentals by extending to Schapery's non‐linear model. The method features a judicious choice of state variables, a stable backward Euler integration step, and a consistent tangent operator. Its greatest strength lies in ready incorporation into existing FEM codes. Numerical examples involving homogeneous stress states such as uniaxial extension and simple shear, and non‐uniform stress states such as a beam under tip load, were carried out by incorporating the present scheme into a general purpose FEM package. Excellent agreement with analytical results is observed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
An s‐adaptive finite element procedure is developed for the transient analysis of 2‐D solid mechanics problems with material non‐linearity due to progressive damage. The resulting adaptive method simultaneously estimates and controls both the spatial error and temporal error within user‐specified tolerances. The spatial error is quantified by the Zienkiewicz–Zhu error estimator and computed via superconvergent patch recovery, while the estimation of temporal error is based on the assumption of a linearly varying third‐order time derivatives of the displacement field in conjunction with direct numerical time integration. The distinguishing characteristic of the s‐adaptive procedure is the use of finite element mesh superposition (s‐refinement) to provide spatial adaptivity. Mesh superposition proves to be particularly advantageous in computationally demanding non‐linear transient problems since it is faster, simpler and more efficient than traditional h‐refinement schemes. Numerical examples are provided to demonstrate the performance characteristics of the s‐adaptive method for quasi‐static and transient problems with material non‐linearity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
This paper investigates the performance of various load‐stepping schemes for finite element analysis with critical state soil models. The accuracy of simple incremental schemes is found to be strongly influenced by the load increment size, the type of flow rule, and the overconsolidation ratio. Similarly, these factors are shown to have a pronounced effect on the efficiency and stability of some classical iterative schemes. Unless they are performed with small load steps, critical state analyses with fixed increment sizes frequently exhibit non‐convergent behaviour or lead to inaccurate solutions. The automatic incrementation schemes developed by Abbo and Sloan (International Journal for Numerical Methods in Engineering 1996; 39 :1737–1759; Proceedings of 5th International Conference, Owen DRJ, Onate E, Hinton E. International Center for Numerical Methods in Engineering, Barcelona, 1997; 1 :325–333), which are based on standard methods for integrating systems of ordinary differential equations, are shown to be efficient, accurate and robust solution techniques for a wide variety of critical state problems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
For the numerical solution of materially non‐linear problems like in computational plasticity or viscoplasticity the finite element discretization in space is usually coupled with point‐wise defined evolution equations characterizing the material behaviour. The interpretation of such systems as differential–algebraic equations (DAE) allows modern‐day integration algorithms from Numerical Mathematics to be efficiently applied. Especially, the application of diagonally implicit Runge–Kutta methods (DIRK) together with a Multilevel‐Newton method preserves the algorithmic structure of current finite element implementations which are based on the principle of virtual displacements and on backward Euler schemes for the local time integration. Moreover, the notion of the consistent tangent operator becomes more obvious in this context. The quadratical order of convergence of the Multilevel‐Newton algorithm is usually validated by numerical studies. However, an analytical proof of this second order convergence has already been given by authors in the field of non‐linear electrical networks. We show that this proof can be applied in the current context based on the DAE interpretation mentioned above. We finally compare the proposed procedure to several well‐known stress algorithms and show that the inclusion of a step‐size control based on local error estimations merely requires a small extra time‐investment. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Several analysis techniques such as extended finite element method (X‐FEM) have been developed recently, which use structured grid for the analysis. Implicit boundary method uses implicit equations of the boundary to apply boundary conditions in X‐FEM framework using structured grids. Solution structures for test and trial functions are constructed using implicit equations such that the boundary conditions are satisfied even if there are no nodes on the boundary. In this paper, this method is applied for analysis using uniform B‐spline basis defined over a structured grid. Solution structures that are C1 or C2 continuous throughout the analysis domain can be constructed using B‐spline basis functions. As a structured grid does not conform to the geometry of the analysis domain, the boundaries of the analysis domain are defined independently using equations of the boundary curves/surfaces. Compared with conforming mesh, it is easier to generate structured grids that overlap the geometry and the elements in the grid are regular shaped and undistorted. Numerical examples are presented to demonstrate the performance of these B‐spline elements. The results are compared with analytical solutions as well as with traditional finite element solutions. Convergence studies for several examples show that B‐spline elements provide accurate solutions with fewer elements and nodes compared with traditional FEM. They also provide continuous stress and strain in the analysis domain, thus eliminating the need for smoothing stress/strain results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
An overview of the extended/generalized finite element method (GEFM/XFEM) with emphasis on methodological issues is presented. This method enables the accurate approximation of solutions that involve jumps, kinks, singularities, and other locally non‐smooth features within elements. This is achieved by enriching the polynomial approximation space of the classical finite element method. The GEFM/XFEM has shown its potential in a variety of applications that involve non‐smooth solutions near interfaces: Among them are the simulation of cracks, shear bands, dislocations, solidification, and multi‐field problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The paper introduces a weighted residual‐based approach for the numerical investigation of the interaction of fluid flow and thin flexible structures. The presented method enables one to treat strongly coupled systems involving large structural motion and deformation of multiple‐flow‐immersed solid objects. The fluid flow is described by the incompressible Navier–Stokes equations. The current configuration of the thin structure of linear elastic material with non‐linear kinematics is mapped to the flow using the zero iso‐contour of an updated level set function. The formulation of fluid, structure and coupling conditions uniformly uses velocities as unknowns. The integration of the weak form is performed on a space–time finite element discretization of the domain. Interfacial constraints of the multi‐field problem are ensured by distributed Lagrange multipliers. The proposed formulation and discretization techniques lead to a monolithic algebraic system, well suited for strongly coupled fluid–structure systems. Embedding a thin structure into a flow results in non‐smooth fields for the fluid. Based on the concept of the extended finite element method, the space–time approximations of fluid pressure and velocity are properly enriched to capture weakly and strongly discontinuous solutions. This leads to the present enriched space–time (EST) method. Numerical examples of fluid–structure interaction show the eligibility of the developed numerical approach in order to describe the behavior of such coupled systems. The test cases demonstrate the application of the proposed technique to problems where mesh moving strategies often fail. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
A stable meshless method for studying the finite deformation of non‐linear three‐dimensional (3D) solids is presented. The method is based on a variational framework with the necessary integrals evaluated through nodal integration. The method is truly meshless, requiring no 3D meshing or tessellation of any form. A local least‐squares approximation about each node is used to obtain necessary deformation gradients. The use of a local field approximation makes automatic grid refinement and the application of boundary conditions straightforward. Stabilization is achieved through the use of special ‘umbrella’ shape functions that have discontinuous derivatives at the nodes. Novel efficient algorithms for constructing the nodal stars and computing the nodal volumes are presented. The method is applied to four test problems: uniaxial tension, simple shear and bending of a bar, and cylindrical indentation. Convergence studies at infinitesimal strain show that the method is well‐behaved and converges with the number of nodes for both uniform and non‐uniform grids. Typical of meshless methods employing nodal integration, the total energy can be underestimated due to the approximate integration. At finite deformation the method reproduces known exact solutions. The bending example demonstrates an interesting example of torsional buckling resulting from the bending. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号