首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical properties of poly(ε‐caprolactone) (PCL) and polylactic acid (PLA) blend reinforced with Dura and Tenera palm press fibers were studied. Dicumyl peroxide (DCP) was used as compatibilizer in the blend composites. Fourier transforms infrared spectrophotometer (FTIR) and field emission scanning electron microscope (FESEM) was used to study the effect of treatment on the fibers and fiber/matrix adhesion respectively. The uncompatibilized blend composites exhibited higher Young's modulus than the compatibilized blend composites. Impact strength of compatibilized blend composites of Tenera fibers (FM) increased by 161% at 10 wt% fiber load more than the uncompatibilized blend composites at same fiber load. The Dura fibers (FN) enhanced impact strength by 133% at 10 wt% fiber load. Tensile strength increased by 40% for compatibilized FM blend composites. In conclusion, it was observed that DCP incorporation resulted in good interfacial adhesion as revealed by the FESEM micrographs and evidenced in the improved mechanical properties. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

2.
In recent years, environmentally friendly materials have become popular because of the growing environmental demands in human society. Natural fibers are now widely used as reinforcements in polymer matrix composites for their various advantages such as low cost, light weight, abundant resources, and biodegradability. However, the applications of these kinds of composites are limited because of their unsatisfactory mechanical properties, which are caused by the poor interfacial compatibility between the fibers and the thermoplastic matrix. In this paper, three methods, including (i) alkali treatment, (ii) alkali and methyl methacrylate (MMA) treatment, and (iii) alkali and polyamide (PA) treatment (APT), were used to treat jute fibers and improve the interfacial adhesion of jute‐fiber‐reinforced polypropylene (PP) composites (JPCs). The mechanical properties of the JPCs were tested, and their impact fracture surfaces were observed. Infrared spectral analysis showed that MMA was grafted and that PA was coated onto the surface of jute fibers. Mechanical tests indicated that the three kinds of pretreated composites presented better mechanical properties than untreated composites. Among them, the APT composite had the best comprehensive properties. Compared with untreated composites, the tensile strength, flexural strength, and flexural modulus of APT composite were increased by 24.8, 31.3, and 28.4%, respectively. Analysis by scanning electron microscopy showed that better interfacial compatibility between jute fibers and PP occured in this kind of composite. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

3.
The interfacial adhesion between four different forms of jute fibers (sliver, bleached, mercerized and untreated) and polyolefinic matrices (LDPE and PP) was studied, as a critical factor affecting the mechanical behavior of these composites. The fiber‐matrix adhesion was estimated by means of the critical fiber length (lc) and the stress transfer ability parameter (τ); such parameters were obtained by Single Fiber Composite (SFC) tests. Tests were carried out to evaluate the mean tensile strength of the fibers, the mean critical fiber lengths and the stress transfer ability parameter for every fiber‐matrix combination, according to Weibull's statistical method. Thermal‐mechanical characterization of the fibers was also carried out to evaluate the resistance to processing conditions. A limited degradation of strength was observed, which, however, does not preclude the use of jute fibers as reinforcing means in polyolefin based composites. It was found that the adhesion was better in PP‐jute composites than in LDPE‐jute composites. In both cases the results showed that the sliver jute and the untreated jute had better adhesion to both matrices than had the bleached and the mercerized fibers. With both matrices the interface adhesion was in the order: mercerized < bleached < untreated = sliver.  相似文献   

4.
《Polymer Composites》2017,38(7):1327-1334
Surface modification of jute fibers is necessary to improve the adhesion and interfacial compatibility between fibers and resin matrix before using fibers in polymer composites. In this study, dodecyl gallate (DG) was enzymatically grafted onto the jute fiber by laccase to endow the fiber with hydrophobicity. A hand lay‐up technique was then adopted to prepare jute/epoxy composites. Contact angle and wetting time measurements showed that the surface hydrophobicity of the jute fabric was increased after the enzymatic graft modification. The water absorption and thickness swelling of the DG‐grafted jute fabric/epoxy composite were lower than those of the other composites. The tensile and dynamic mechanical properties of the jute/epoxy composites were enhanced by the surface modification. Scanning electron microscopy images revealed stronger fiber–matrix adhesion in composites with modified fibers. Therefore, the enzymatic graft modification increased the fiber–matrix interface area. The fiber–matrix adhesion was enhanced, and the mechanical properties of the composites were improved. POLYM. COMPOS., 38:1327–1334, 2017. © 2015 Society of Plastics Engineers  相似文献   

5.
Hybrid composites from rayon fibers (~2–5 cm size) and polypropylene (PP) were fabricated by using an extruder. Fibre content of the composite was varied from 5–30% by weight and physico-mechanical properties of the composites were measured. Surface morphology as observed by SEM showed good interface adhesion between rayon and PP matrix. Furthermore inclusion of rayon (up to 15% fiber inclusion) in the composite increased tensile, bending and hardness properties. As the fiber content in the composite increased more than 15%, physico-mechanical properties decreased due to the decrease of fiber matrix adhesion. The change of tensile properties due to environmental aging was carried out by keeping the composite under soil for 1 month and tensile properties were measured periodically. The aging result suggests that composites retained about 75% of its original tensile and bending strength even after 1 month soil burial. The modified fibers were also used for the study. As such the fibers were treated with vinyl-trimethyoxysilane and methanol solution and irradiated under UV before being used with PP in extruder. The results showed retardation of the physico-mechanical properties for composites obtained from irradiated rayon fibers than the composites fabricated from non irradiated rayon fibers.  相似文献   

6.
Silane‐grafted polypropylene manufactured by a reactive grafting process was used as the coupling agent in polypropylene/glass‐fiber composites to improve the interaction of the interfacial regions. Polypropylene reinforced with 30% by weight of short glass fibers was injection‐molded and the mechanical behaviors were investigated. The results indicate that the mechanical properties (tensile strength, tensile modulus, flexural strength, flexural modulus, and Izod impact strength) of the composite increased remarkably as compared with the noncoupled glass fiber/polypropylene. SEM of the fracture surfaces of the coupled composites shows a good adhesion at the fiber/matrix interface: The fibers are coated with matrix polymer, and a matrix transition region exists near the fibers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1537–1542, 1999  相似文献   

7.
Recycled polyethylene terephthalate (rPET) used as an alternative reinforcing additive for polypropylene (PP) based composite fibers, compared with liquid crystalline polymer (LCP), was investigated. Both PP-LCP and PP-rPET composites were prepared as fiber using hot drawing process. The effects of draw ratios and compatibilizer dosages on morphology in relation to tensile properties of both types of the composite systems were studied. The variation of draw ratios resulted in much change of stress–strain behavior in compatibilized rPET composite system owing to the obvious difference in morphological change of rPET dispersed phase upon drawing. Tensile strength and extensibility of both composites system were significantly improved with compatibilizer loading. The tensile strength of compatibilized rPET-composite fibers was higher than that of the compatibilized LCP system. The obtained results demonstrated the high potential of rPET as a well-defined reinforcing material for PP based composite fiber under the improved interfacial adhesion promoted by compatibilizer.  相似文献   

8.
The investigation of the economical use of lignocellulose waste, which is one of the environmental problems facing nations, is ongoing. In this study, waste cardboard paper fiber reinforcing polypropylene (PP) composites was developed. In order to modify the PP matrix maleated PP (MA‐g‐PP) a 5 wt% and a grafting rate of 1 and 2 wt% was used as a compatibilizer. The effects of fiber and compatibilizer content as well as graft content are evaluated by mechanical, thermal property measurements, and scanning electron microscopy (SEM). The compatibilizer improved all mechanical properties significantly. Thus, the tensile strength of MA‐g‐PP‐containing composites increases compared to PP/cardboard composites paper content increases. However, the tensile modulus of a PP‐based composite increases with an increase in paper fiber with the compatibilizer having little effect. SEM revealed that the addition of MA‐g‐PP generates strong interactions between a PP matrix and paper fibers. However, the addition of the MA‐g‐PP compatibilizing agent gives a significant improvement on the crystallization of the composites, whereas the compatibilized PP/old corrugated cardboard (OCC) composites have higher crystallinity (Xc) than uncompatibilized PP/OCC composites. The MA‐g‐PP also diminished the water absorption in the composites. J. VINYL ADDIT. TECHNOL., 22:231–238, 2016. © 2014 Society of Plastics Engineers  相似文献   

9.
Composites of palm fibers and poly(propylene) (PP) were compounded in an extruder at 200°C. The composites were subsequently injection molded into standard tensile specimens for mechanical characterization. The fracture morphology of the specimens was analyzed by scanning electron microscopy. It was observed that the composite modulus increased with the increase of fiber content, indicating the existence of adhesion between PP and the much stiffer palm fibers. However, the adhesion was not satisfactory and resulted in a decrease in the composite tensile strength with fiber addition. The compatibilizer Epolene E‐43 was used to minimize this incompatibility between the wood fibers and the PP matrix. The maleated PP additive enhanced the fiber–matrix adhesion, resulting in an improvement in composite performance. Also, small fibers showed better mechanical properties than those of long fibers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2581–2592, 2004  相似文献   

10.
Wood plastic composites attract great attention in various applications. Chemical modification of the wood fiber with NaOH and various coupling agents was performed for wood fiber composites. Wood fibers treated with NaOH, APTES, TEVS, and BC coupling agents were compounded with PP matrix for measuring physical properties. All those chemical treatments increased physical properties much compared to the untreated case because of the elimination of impurities by NaOH treatment and because of the introduction of compatible molecular structure onto the wood fiber surfaces. Especially, the TEVS case showed the best tensile strength, and it could be attributed to the chain structure having double bond of the molecules for high compatibility with PP matrix. The SEM morphology also demonstrated increased adhesion between wood fibers and PP matrix with chemical treatments. The adhesion between wood fiber and PP matrix would be a key parameter in achieving high physical properties of the composite materials.  相似文献   

11.
采用转矩流变仪混合造粒,通过注射成型方法制备了聚丙烯(PP)/黄麻纤维复合材料,研究了对纤维表面进行处理的NaOH浓度、纤维含量和相容剂的含量对PP/黄麻纤维复合材料力学性能的影响,采用扫描电镜对纤维表面及复合材料的断面形貌进行分析。结果表明:黄麻纤维经过碱处理后PP/黄麻纤维复合材料的力学性能优于纤维未处理的复合材料的力学性能,随着NaOH浓度的提高,PP/黄麻纤维复合材料的拉伸强度和冲击强度增加,在NaOH浓度为16%时,其拉伸强度和冲击强度最佳;其弯曲强度随着NaOH浓度的提高先增加而后下降,在8%浓度时,弯曲强度最大。随着纤维含量的提高,PP/黄麻纤维复合材料的拉伸强度和弯曲强度先增加后下降,在纤维含量达到20%时,PP/黄麻纤维合材料的拉伸强度和弯曲强度达到最大。随着纤维含量的提高,PP/黄麻纤维复合材料的冲击强度降低。相容剂的加入使得PP/黄麻纤维复合材料的拉伸强度和弯曲强度明显增加。  相似文献   

12.
This article addresses the processing and ageing properties of jute fiber reinforced polypropylene (PP) composites. The composite has been manufactured by a continuous extrusion process and results in free flowing composite granules, comprising up to 50 weight percent (wt %) jute fiber in PP. These granules have similar shape and diameter as commercially available PP granules. Rheological analysis shows that viscosity of the compounds follows the same shear rate dependency as PP and is on the same level as glass‐PP compounds. The mechanical properties show very little variation and exhibit strength and stiffness values at the upper range of competing natural fiber reinforced compounds for injection molding. The mechanical performance reduces gradually upon prolonged thermal loading and immersion in water. The low water diffusion coefficient of the 50 wt % jute‐PP composites indicates that the fibers are not forming a continuous network throughout the polymer. The jute fibers exhibit a stabilizing effect against ultra violet irradiation (UV) on PP polymer and, as a consequence, the mechanical properties of jute‐PP composites hardly decrease during an accelerated UV ageing test. Bacteria, fungi, and garden mold grow easily on the compound material, but only have a limited effect on mechanical properties. The resistance to growth of bacteria on the materials surface can be increased using a biostabilizer. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Jute fabrics such as reinforced polyvinyl chloride (PVC), polypropylene (PP), and a mixture of PVC and PP matrices-based composites (50 wt% fiber) were prepared by compression molding. Tensile strength (TS), bending strength (BS), tensile modulus (TM), and vbending modulus (BM) of jute fabrics' reinforced PVC composite (50 wt% fiber) were found to be 45 MPa, 52 MPa, 0.8 GPa, and 1.1 GPa, respectively. The effect of incorporation of PP on the mechanical properties of jute fabrics' reinforced PVC composites was studied. It was found that the mixture of 60% PP and 40% PVC matrices based composite showed the best performance. TS, BS, TM, and BM for this composite were found to be 65 MPa, 70 MPa, 1.42 GPa, and 1.8 GPa, respectively. Degradation tests of the composites for up to six months were performed in a soil medium. Thermo-mechanical properties of the composites were also studied.  相似文献   

14.
Jute‐fibers‐reinforced thermoplastic composites are widely used in the automobile, packaging, and electronic industries because of their various advantages such as low cost, ease of recycling, and biodegradability. However, the applications of these kinds of composites are limited because of their unsatisfactory mechanical properties, which are caused by the poor interfacial compatibility between jute fibers and the thermoplastic matrix. In this work, four methods, including (i) alkali treatment, (ii) alkali and silane treatment, (iii) alkali and (maleic anhydride)‐polypropylene (MAPP) treatment, and (iv) alkali, silane, and MAPP treatment (ASMT) were used to treat jute fibers and improve the interfacial adhesion of jute‐fiber‐reinforced recycled polypropylene composites (JRPCS). The mechanical properties and impact fracture surfaces of the composites were observed, and their fracture mechanism was analyzed. The results showed that ASMT composites possessed the optimum comprehensive mechanical properties. When the weight fraction of jute fibers was 15%, the tensile strength and impact toughness were increased by 46 and 36%, respectively, compared to those of untreated composites. The strongest interfacial adhesion between jute fibers and recycled polypropylene was obtained for ASMT composites. The fracture styles of this kind of composite included fiber breakage, fiber pull‐out, and interfacial debonding. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers.  相似文献   

15.
Abstract

Jute fiber (Hessian cloth) reinforced low-density polyethylene (LDPE) composites were prepared by heat press molding techniques. The mechanical properties such as tensile strength (TS), bending strength (BS), and elongation at break of the composites were studied. The enhancement of TS (33%) and BS (50%) were obtained as a result of reinforcment jute fabrics in LDPE. In order to improve the mechanical properties and adhesion between jute and LDPE, hessian cloth were each treated with 2-hydroxyl ethyl methacrylate (HEMA). The HEMA-treated jute composite showed higher tensile and bending strength compared to untreated jute composite and LDPE. Dielectric properties like dielectric constant and loss tangent (tan δ) of jute, LDPE and composites were studied. Ferro to paraelectric phase transition occurred in both treated and untreated jute composites containing more than 20% jute. Water uptake behaviors of the composite were monitored and HEMA-treated composite showed lower water absorption behavior. The adhesion nature of jute and LDPE also characterized by scanning electronic microscopy (SEM), better adhesion was observed between HEMA-treated jute and LDPE over untreated ones.  相似文献   

16.
黄麻纤维增强聚丙烯的力学性能   总被引:9,自引:0,他引:9  
本文讨论了注塑成型黄麻纤维增强聚丙烯的制备方法和力学性能.将纤维重量含量分别为10%、20%和30%的复合材料进行比较,分析纤维含量对复合材料拉伸、弯曲和冲击性能的影响;将纤维分别切成约3mm、5mm和10mm长制成复合材料进行比较,分析纤维长度对复合材料拉伸、弯曲和冲击性能的影响.掺入黄麻纤维能使聚丙烯的拉伸和弯曲性能提高,但使其冲击强度降低;随纤维含量的增加或纤维长度的增加,复合材料的强度和模量是递增的,而冲击强度是递减的.  相似文献   

17.
Pineapple leaf fiber (PALF) was used as a reinforcement in polyolefins. Polypropylene (PP) and low‐density polyethylene (LDPE) composites with different fiber lengths (long and short fibers) and fiber contents (0–25%) were prepared and characterized. The results showed that the tensile strength of the composites increased when the PALF contents were increased. It was observed that the composites containing long fiber PALF were stronger than the short fiber composites as determined by greater tensile strength. An SEM study on the tensile fractured surface confirmed the homogeneous dispersion of the long fibers in the polymer matrixes better than dispersion of the short fibers. The unidirectional arrangement of the long fibers provided good interfacial bonding between the PALF and polymer which was a crucial factor in achieving high strength composites. Reduction in crystallinity of the composites, as evident from XRD and DSC studies suggested that the reinforcing effect of PALF played an important role in enhancing their mechanical strength. From the rule of mixtures, the stress efficiency factors of the composite strength could be calculated. The stress efficiency factors of LDPE were greater than those of PP. This would possibly explain why the high modulus fiber (PALF) had better load transfers to the ductile matrix of LDPE than the brittle matrix of PP. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Miscanthus fibers reinforced biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) matrix‐based biocomposites were produced by melt processing. The performances of the produced PBAT/miscanthus composites were evaluated by means of mechanical, thermal, and morphological analysis. Compared to neat PBAT, the flexural strength, flexural modulus, storage modulus, and tensile modulus were increased after the addition of miscanthus fibers into the PBAT matrix. These improvements were attributed to the strong reinforcing effect of miscanthus fibers. The polarity difference between the PBAT matrix and the miscanthus fibers leads to weak interaction between the phases in the resulting composites. This weak interaction was evidenced in the impact strength and tensile strength of the uncompatibilized PBAT composites. Therefore, maleic anhydride (MAH)‐grafted PBAT was prepared as compatibilizer by melt free radical grafting reaction. The MAH grafting on the PBAT was confirmed by Fourier transform infrared spectroscopy. The interfacial bonding between the miscanthus fibers and PBAT was improved with the addition of 5 wt % of MAH‐grafted PBAT (MAH‐g‐PBAT) compatibilizer. The improved interaction between the PBAT and the miscanthus fiber was corroborated with mechanical and morphological properties. The compatibilized PBAT composite with 40 wt % miscanthus fibers exhibited an average heat deflection temperature of 81 °C, notched Izod impact strength of 184 J/m, tensile strength of 19.4 MPa, and flexural strength of 22 MPa. From the scanning electron microscopy analysis, better interaction between the components can be observed in the compatibilized composites, which contribute to enhanced mechanical properties. Overall, the addition of miscanthus fibers into a PBAT matrix showed a significant benefit in terms of economic competitiveness and functional performances. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45448.  相似文献   

19.
以丙纶纤维为增强体,聚丙烯树脂为基体,采用热压成型的方法制备丙纶纤维/PP复合材料板材.研究了不同热压温度、不同纤度的丙纶纤维用量对复合材料力学性能的影响.结果表明:本实验最佳热压温度为195℃,在此温度下,随着纤维用量的增加,复合材料的拉伸强度呈先升后降的趋势,在用量为15%时达到最高点,纤度为240D的丙纶纤维/P...  相似文献   

20.
Jute and coir fiber‐reinforced polypropylene (PP) composites (45 wt% fiber) were prepared by compression molding. Composites were fabricated with irradiated jute fiber/irradiated PP and irradiated coir fiber/irradiated PP at different doses (250–1,000 krad). It was revealed that jute‐based composites had better mechanical properties as compared to coir‐based composites. Interfacial shear strength of jute/PP and coir/PP systems was measured by using the single‐fiber fragmentation test. Scanning electron microscopy investigation shows poor fiber matrix adhesion for coir‐based composites than that of jute‐based composites. Water uptake and soil degradation tests of the composites were also performed. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号