首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
《工业建筑》2013,(11):12-15
对于再生混凝土,目前主要研究单掺纤维进行再生混凝土的性能增强研究,而对于再生纤维,尤其是混杂再生纤维进行性能增强的研究少有涉及。基于废旧轮胎中所剥离出的钢纤维及尼龙纤维,通过27组共81个试块的基本力学性能试验,探讨再生纤维对普通再生混凝土基本力学性能的影响。分析不同掺量再生纤维对不同取代率再生混凝土抗压、抗拉及变形性能的影响,结果表明,再生纤维能够有效地增强各取代率下普通再生混凝土的劈裂抗拉强度、抗折强度、延性及抗裂性能,但对于抗压强度略有降低,其再生纤维的掺量优化还有待于进一步研究。  相似文献   

2.
将玄武岩、聚丙烯纤维以单掺和混杂的形式掺入普通C30混凝土基体中,通过对4种掺加量在不同的掺加方式—单掺和3种不同混杂比例的混掺下对混凝土基体的28d抗压、劈裂抗拉、抗折等性能进行试验研究。结果表明,混凝土中掺入纤维后,对基体混凝土的抗压强度有降低作用;低掺量纤维对基体劈裂抗拉强度有明显的提高;对抗折强度有大幅度的提高作用;同时,对混凝土破坏形态有极大改善作用,其中混杂纤维优于单掺纤维。  相似文献   

3.
以强度等级、骨料取代率和混杂纤维为变量,研究纤维再生混凝土的各项力学性能,同时分析了破坏形态。试验结果表明,纤维再生混凝土试件的破坏形态与普通混凝土相似;强度等级对立方体抗压强度影响较大,但对劈裂抗拉强度和轴心抗压强度影响不大;再生骨料由于本身的缺陷对再生混凝土强度有降低的影响;因为纤维良好的抗拉强度和延性,所以加入混杂纤维可以明显提高再生混凝土强度,但当掺量过多时,纤维的分布不均匀,反而影响了其发挥有效的作用;通过非线性拟合得出其强度换算公式。  相似文献   

4.
通过对单掺和三种不同混杂比例混掺的方式,以体积掺加率0.3%、0.6%、0.9%、1.2%将玄武岩、聚丙烯纤维掺入普通C30混凝土中形成混杂纤维混凝土,对其进行7d、14d、28d龄期的抗硫酸盐腐蚀性能试验研究。结果表明,对基体混凝土在龄期为7d的抗压强度耐蚀系数提高最为显著的是单掺纤维系列与1:1、1:2混杂纤维系列纤维混凝土。各系列纤维对基体混凝土14d耐蚀系数提高的最佳纤维掺加率在0.3%附近;单掺聚丙烯纤维系列、单掺玄武岩纤维系列对基体28d耐蚀系数提高的最佳纤维掺加率分别在0.3%、0.9%附近。总体上混杂纤维系列纤维混凝土的抗硫酸静泡腐蚀能力优于单掺纤维系列纤维混凝土。  相似文献   

5.
选用钢纤维、聚丙烯纤维及二元混杂纤维轻骨料混凝土,系统研究了其抗压强度、弹性模量、轴心抗压强度及抗折强度等力学性能,试验结果体现了不同纤维种类、不同纤维掺量及纤维混杂比例对轻骨料混凝土力学性能的影响;当钢纤维以体积率1.0%与聚丙烯纤维0.6kg/m3混杂时,纤维轻骨料混凝土的各项力学性能达到优化.  相似文献   

6.
林清 《福建建设科技》2022,(6):52-54+99
为研究玄武岩纤维与聚乙烯醇纤维对混凝土力学性能的影响规律,将玄武岩纤维(0、0.1%、0.15%)和聚乙烯醇纤维(0、0.1%、0.15%、0.2%)分别以单掺与混掺的形式加入C50混凝土基体中,进行抗压强度与劈裂抗拉强度力学性能试验。试验结果表明:单掺纤维均可改善混凝土力学性能;混杂纤维混凝土中,当玄武岩纤维与聚乙烯醇纤维掺量分别为0.15%,0.1%时,混凝土抗压强度最大,比素混凝土提高了6.6%;当玄武岩纤维与聚乙烯醇纤维掺量均为0.15%时,混凝土劈裂抗拉强度最大,比素混凝土提高了24.8%;最后通过试验数据回归拟合得到玄武岩-聚乙烯醇混杂纤维混凝土劈裂抗拉强度计算公式,供相关工程参考。  相似文献   

7.
本文将控制纤维的总掺率,改变废弃聚丙烯纤维和玄武岩纤维的掺率比,分析其对再生砂浆力学性能的影响。其结果为,混杂纤维再生砂浆的稠度随着废弃聚丙烯纤维掺率的增加而增大;抗压强度随着聚丙烯纤维掺率的增加而减小;且当各纤维的掺率比达到最佳值时,混杂纤维再生砂浆的抗折强度达到最大值;再生砂浆的抗冲击性能与纤维的断裂伸长率有关。  相似文献   

8.
将玄武岩纤维和聚丙烯纤维混掺,配制强度等级为C30的混杂纤维掺沙漠砂混凝土,并研究其力学性能及破坏形态的变化趋势。结果表明:在混杂纤维掺量和掺配比例的影响下,掺沙漠砂混凝土的抗压强度和静压弹性模量变化较小;劈裂抗拉强度显著增强;试件的破坏形态更完整,整体性有明显提升;对比单一纤维的掺入方式,混杂纤维对掺沙漠砂混凝土力学性能的改善效果更好。  相似文献   

9.
研究了素混凝土、粉煤灰混凝土、层布式混杂纤维混凝土及混杂纤维混凝土在14d、28 d、56 d的抗压强度和劈裂强度。结果表明:粉煤灰会降低混凝土的早期强度但能增加混凝土的和易性,掺30%粉煤灰的聚丙烯纤维混凝土在28 d的抗压强度比素混凝土降低了10%,劈裂强度提高了3%。掺30%粉煤灰的混杂纤维混凝土在28 d的抗压强度比素混凝土提高了4%,劈裂强度提高了10%。聚丙烯纤维和钢纤维的加入可以明显改善混凝土的脆性,提高混凝土的劈裂强度,若两种纤维混杂掺加改善混凝土脆性效果更明显。  相似文献   

10.
文章对玄武岩纤维混凝土与聚乙烯醇、玄武岩混杂纤维混凝土的抗压强度进行研究,阐述了不同纤维体积掺量、纤维长度和纤维种类对纤维混凝土抗压强度的影响,得到以下结论:混凝土抗压强度随着纤维掺量增加而先增后减,随纤维长度增加而增加;混杂纤维对抗压强度增强效果要优于单掺玄武岩纤维;纤维种类和掺量是影响混凝土抗压强度的主要因素。  相似文献   

11.
王晓军 《混凝土》2021,(3):149-152
为了研究混杂纤维大体积混凝土水化热处理配合比试验与力学特性,首先通过对现有纤维混凝土的情况进行分析,选择通过将不同模量的纤维进行混掺的方式,将聚丙烯腈纤维还有玄武岩纤维混掺,形成混杂纤维混凝土;然后进行配合比设计,根据研究目标即纤维对混凝土力学特性的影响,将研究内容分为纤维总掺量对混凝土力学特性的影响、纤维比值对混凝土力学特性的影响两部分;最后,按照混凝土配合比设计进行试验,分别研究纤维总掺量及纤维比值对混凝土抗折强度的影响、纤维总掺量及纤维比值对混凝土抗压强度的影响、纤维总掺量及纤维比值对混凝土抗拉强度的影响,得到最佳纤维总掺量以及玄武岩纤维和聚丙烯腈纤维混合的最佳比值,并且分析试验结果。对于抗折强度最佳纤维总掺量为0.1%、最佳纤维比值为1∶1;对于抗压强度最佳纤维总掺量为0.08%、最佳纤维比值为1∶1;对于抗拉强度最佳纤维总掺量为0.1%、最佳纤维比值为3∶1。  相似文献   

12.
对掺加聚丙烯-玄武岩混杂纤维的陶粒混凝土进行了抗压强度、抗折强度、劈裂抗拉强度试验,得到了混杂纤维对陶粒混凝土力学性能的影响规律。结果表明:混杂纤维掺量为0.2%时,陶粒混凝土的抗压强度、劈裂抗拉强度、抗折强度提升幅度最大,分别较基准组提高了11.21%、30.73%、15.26%,但掺量过大时陶粒混凝土的力学性能会下降,甚至出现负效应;聚丙烯纤维与玄武岩纤维的混杂比为2∶1时,其对陶粒混凝土的增强效果较好;混杂纤维能增强陶粒混凝土的韧性,对抗折强度和抗拉强度提升效果明显,对抗压强度提升效果较小。  相似文献   

13.
《混凝土》2017,(11)
为了研究钢-聚丙烯混杂纤维对再生混凝土基本力学性能的影响,设计制作了10组混杂纤维再生混凝土试件和1组普通再生混凝土试件,并对其进行立方体抗压强度、劈裂抗拉强度、抗折强度试验。试验中考虑的因素有钢-聚丙烯纤维混掺掺量、钢纤维和聚丙烯纤维长径比以及钢纤维类型,分析了各因素对再生混凝土基本力学性能的影响。结果表明:当钢纤维掺量为117 kg/m~3,聚丙烯纤维掺量为0.6 kg/m~3时,混杂纤维再生混凝土表现出较好的增强效果,其中立方体抗压、劈裂抗拉及抗折强度较普通再生混凝土分别提高了17.68%、57.88%、28.32%;随着钢纤维长径比的增加混杂纤维再生混凝土各强度均得到显著提高,最高提高了10.51%,而聚丙烯纤维长径比对混杂纤维再生混凝土各强度的影响效果不明显。端勾型钢纤维混杂纤维再生混凝土各强度均高于波纹型。此外,掺入混杂纤维后,再生混凝土由脆性破坏转变为一定的塑性破坏。  相似文献   

14.
《工业建筑》2021,51(7):151-155
通过制备8种不同纤维掺量的聚丙烯纤维再生砖混凝土(PFRB混凝土)进行单因素试验,分析纤维掺量对其力学性能(立方体抗压强度、轴心抗压强度和劈裂抗拉强度)的影响,得到了立方体抗压强度和轴心抗压强度、立方体抗压强度和劈裂抗拉强度之间的关系式,并建立了不同纤维掺量下PFRB混凝土受压应力-应变全曲线方程。试验发现:随着纤维掺量增大,PFRB混凝土的轴心抗压强度、立方体抗压强度和劈裂抗拉强度均先增加后降低,并且都在纤维掺量为0.1%时达到最大。  相似文献   

15.
为研究混杂掺入钢纤维和聚丙烯纤维对再生混凝土(RAC)力学性能及抗冲击性能的影响,设计制作了素RAC及不同纤维掺量的钢纤维RAC和钢/聚丙烯混杂纤维RAC试件,并对其进行了立方体抗压、劈裂抗拉、抗折强度和抗冲击性能试验研究。试验结果表明:与素RAC相比,掺入钢纤维显著提高了RAC的抗压性能,但混合掺入聚丙烯纤维后其抗压强度有所降低;单掺钢纤维或混杂掺入钢/聚丙烯纤维均提高RAC的劈裂抗拉、抗折和抗冲击性能;与单掺钢纤维相比,混合掺入钢/聚丙烯纤维对RAC的抗拉、抗折和抗冲击性能的改善效果更明显。  相似文献   

16.
李晗 《混凝土》2012,(2):93-95
通过混杂纤维混凝土试块的高温后抗压试验,分析了温度、纤维类别和纤维体积率、混凝土基体强度等级对混凝土高温后抗压强度的影响。结果表明:随着经历温度的升高,混杂纤维混凝土高温后的抗压强度及高温后与常温下抗压强度比在400℃之后下降幅度较大;适宜掺量的钢纤维(1%纤维体积率)和聚丙烯纤维(0.1%纤维体积率)能较好的提高混杂纤维混凝土高温后的抗压强度。在试验研究的基础上,建立了考虑温度、钢纤维和聚丙烯纤维体积率共同影响的高温后混杂纤维混凝土抗压强度计算模型,为纤维混凝土结构的抗火设计及灾后处理提供了理论依据。  相似文献   

17.
进行了钢纤维与聚丙烯纤维掺量及其混杂对高性能混凝土抗压强度和劈拉强度的试验研究,探讨了不同混杂纤维组合对高性能混凝土基体力学性能的影响规律。结果表明,钢-聚丙烯纤维混凝土的抗压强度、劈裂抗拉强度及其纤维增强系数与钢纤维和聚丙烯纤维掺量及混杂比密切相关。钢纤维掺量较低时,抗压强度随聚丙烯纤维掺量增加先减小后增加;钢纤维掺量较大时,抗压强度随聚丙烯纤维掺量的增加一直增大;当钢纤维掺量一定时,劈裂抗拉强度随聚丙烯纤维掺量的增加先增大后减小。当钢纤维和聚丙烯纤维掺量分别为3%、0.3%时,混杂效应系数最大。  相似文献   

18.
为研究钢-聚丙烯混杂纤维陶粒混凝土与钢筋的黏结性能,开展了16组不同混杂纤维掺量陶粒混凝土的立方体抗压强度、劈裂抗拉强度试验,得到了混凝土力学性能随混杂纤维掺量的变化规律。通过钢筋-混凝土黏结性能试验,得到螺纹钢筋与混凝土的极限黏结强度、峰值滑移及试件破坏形态等。基于试验实测黏结强度数据,建立了钢-聚丙烯混杂纤维陶粒混凝土极限黏结强度计算式,该式考虑了未掺加纤维的陶粒混凝土立方体抗压强度、钢纤维和聚丙烯纤维特征参数、钢筋直径、混凝土保护层厚度、黏结长度等参数。基于试验实测黏结强度和滑移值,采用三段式(上升段、水平段、下降段)表达式建立了可描述钢-聚丙烯混杂纤维陶粒混凝土与变形钢筋的黏结滑移模型。  相似文献   

19.
研究改性聚丙烯纤维和耐碱玻璃纤维单掺和混杂掺加对混凝土力学性能以及抗渗、抗冲击性能的影响规律。试验结果表明,纤维对混凝土抗压强度影响不大,甚至有的情况下反而降低了试件抗压强度,而对于其抗折强度提高明显;纤维的掺入可提高混凝土抗渗、抗冲击等性能,但并不是掺量越高性能越好,而是存在适宜的混杂比例,在本研究条件下最佳掺量为0.4kg/m^3,改性聚丙烯纤维和0.8kg/m^3耐碱玻璃纤维混杂。  相似文献   

20.
研究了再生粗骨料取代率、纤维的体积掺量和掺入方式对再生混凝土性能的影响,根据实测应力-应变曲线,计算出了各组试件的压缩韧度指数和弹性模量.结果表明:再生混凝土的抗压强度略低于天然骨料混凝土,掺入纤维可显著提高再生混凝土的抗压强度、韧性和弹性模量;单掺时,对于抗压强度和弹性模量,玻璃纤维、PVA纤维的最佳掺量分别为0.4...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号