首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The master–slave approach is adapted to model the kinematic constraints encountered in incompressibility. The method presented here allows us to obtain discrete displacement and pressure fields for arbitrary finite element formulations that have discontinuous pressure interpolations. The resulting displacements satisfy exactly the incompressibility constraints in a weak sense, and are obtained by solving a system of equations with the minimum (independent) degrees of freedom. In linear analysis, the method reproduces the well‐known stability results for inf–sup compliant elements, and permits to compute the pressure modes (physical or spurious) when they exist. By rewriting the equilibrium equations of a hyperelastic material, the method is extended to non‐linear elasticity, while retaining the exact fulfilment of the incompressibility constraints in a weak sense. Problems with analytical solution in two and three dimensions are tested and compared with other solution methods. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The ‘variable‐element‐topology finite element method’ (VETFEM) is a finite‐element‐like Galerkin approximation method in which the elements may take arbitrary polyhedral form. A complete development of the VETFEM is given here for both two and three dimensions. A kinematic enhancement of the displacement‐based formulation is also given, which effectively treats the case of near‐incompressibility. Convergence of the method is discussed and then illustrated by way of a 2D problem in elastostatics. Also, the VETFEM's performance is compared to that of the conventional FEM with eight‐node hex elements in a 3D finite‐deformation elastic–plastic problem. The main attraction of the new method is its freedom from the strict rules of construction of conventional finite element meshes, making automatic mesh generation on complex domains a significantly simpler matter. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The present paper is concerned with an efficient framework for a nonlinear finite element procedure for the rate‐independent finite strain analysis of solids undergoing large elastic‐isochoric plastic deformations. The formulation relies on the introduction of a mixed‐variant metric deformation tensor which will be multiplicatively decomposed into a plastic and an elastic part. This leads to the definition of an appropriate logarithmic strain measure which can be additively decomposed into the exact isochoric (deviatoric) and volumetric (spheric) strain measures. This fact may be seen as the basic idea in the formulation of appropriate mixed finite elements which guarantee the accurate computation of isochoric strains. The mixed‐variant logarithmic elastic strain tensor provides a basis for the definition of a local isotropic hyperelastic stress response whereas the plastic material behavior is assumed to be governed by a generalized J2 yield criterion and rate‐independent isochoric plastic strain rates are computed using an associated flow rule. On the numerical side, the computation of the logarithmic strain tensors is based on higher‐order Padé approximations. To be able to take into account the plastic incompressibility constraint a modified mixed variational principle is considered which leads to a quasi‐displacement finite element procedure. Finally, the numerical solution of finite strain elastic‐plastic problems is presented to demonstrate the efficiency and the accuracy of the algorithm. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
A computational model for micropolar hyperelastic‐based finite elastoplasticity that incorporates isotropic hardening is developed. The basic concepts of the non‐linear micropolar kinematic framework are reviewed, and a thermodynamically consistent constitutive model that features Neo‐Hooke‐type elasticity and generalized von Mises plasticity is described. The integration of the constitutive initial value problem is carried out by means of an elastic‐predictor/plastic‐corrector algorithm, which retains plastic incompressibility. The solution procedure is developed carefully and described in detail. The consistent material tangent is derived. The micropolar constitutive model is implemented in an implicit finite element framework. The numerical example of a notched cylindrical bar subjected to large axial displacements and large twist angles is presented. The results of the finite element simulations demonstrate (i) that the methodology is capable of capturing the size effect in three‐dimensional elastoplastic solids in the finite strain regime, (ii) that the formulation possesses a regularizing effect in the presence of strain localization, and (iii) that asymptotically quadratic convergence rates of the Newton–Raphson procedure are achieved. Throughout this paper, effort is made to present the developments as a direct extension of standard finite deformation computational plasticity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The paper presents in detail a novel method for finite element analysis of materials undergoing strain‐softening damage based on the crack band concept. The method allows applying complex material models, such as the microplane model for concrete or rock, in finite element calculations with variable finite element sizes not smaller than the localized crack band width (corresponding to the material characteristic length). The method uses special localization elements in which a zone of characteristic size, undergoing strain softening, is coupled with layers (called ‘springs’) which undergo elastic unloading and are normal to the principal stress directions. Because of the coupling of strain‐softening zone with elastic layers, the computations of the microplane model need to be iterated in each finite element in each load step, which increases the computer time. Insensitivity of the proposed method to mesh size is demonstrated by numerical examples. Simulation of various experimental results is shown to give good agreement. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
A stabilized conforming nodal integration finite element method based on strain smoothing stabilization is presented. The integration of the stiffness matrix is performed on the boundaries of the finite elements. A rigorous variational framework based on the Hu–Washizu assumed strain variational form is developed. We prove that solutions yielded by the proposed method are in a space bounded by the standard, finite element solution (infinite number of subcells) and a quasi‐equilibrium finite element solution (a single subcell). We show elsewhere the equivalence of the one‐subcell element with a quasi‐equilibrium finite element, leading to a global a posteriori error estimate. We apply the method to compressible and incompressible linear elasticity problems. The method can always achieve higher accuracy and convergence rates than the standard finite element method, especially in the presence of incompressibility, singularities or distorted meshes, for a slightly smaller computational cost. It is shown numerically that the one‐cell smoothed four‐noded quadrilateral finite element has a convergence rate of 2.0 in the energy norm for problems with smooth solutions, which is remarkable. For problems with rough solutions, this element always converges faster than the standard finite element and is free of volumetric locking without any modification of integration scheme. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, different methodologies to enforce initial stresses or strains in finite strain problems are compared. Since our main interest relies on the simulation of living tissues, an orthotropic hyperelastic constitutive model has been used to describe their passive material behaviour. Different methods are presented and discussed. Firstly, the initial strain distribution is obtained after deformation from a previously assumed to be known stress‐free state using an appropriate finite element approach. This approach usually involves important mesh distortions. The second method consists on imposing the initial strain field from the definition of an initial incompatible ‘deformation gradient’ field obtained from experimental data. This incompatible tensor field can be imposed in two ways, depending on the origin of the experimental tests. In some cases as ligaments, the experiment is carried out from the stress‐free configuration, while in blood vessels the starting point is usually the load‐free configuration with residual stresses. So the strain energy function would remain the same for the whole simulation or redefined from the new origin of the experiment. Some validation and realistic examples are presented to show the performance of the strategies and to quantify the errors appearing in each of them. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Non‐linear hyperelastic response of reinforced elastomers is modeled using a novel three‐dimensional mixed finite element method with a nonlocal pressure field. The element is unconditionally convergent and free of spurious pressure modes. Nonlocal pressure is obtained by an implicit gradient technique and obeys the Helmholtz equation. Physical motivation for this nonlocality is shown. An implicit finite element scheme with consistent linearization is presented. Finally, several hyperelastic examples are solved to demonstrate the computational algorithm including the inf–sup and verifications tests. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The paper describes a local‐control arc‐length method which can be combined with various forms of line‐search procedure. In particular, a new ‘double‐line‐search’ method is developed, which significantly improves the solution procedure and turns out to be efficient and robust. Although the potential range of applications is wide, the method is here limited to the finite element analysis of delamination in a laminated composite using a cohesive‐zone model combined with interface elements. Three problems have been analysed and comparisons have been made with experimental results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

Rigid‐viscoplastic finite element equations are used for the analysis of metal forming process. With the view of solution accuracy and computation efficiency, the possible overconstraint of the incompressibility condition is avoided by modifying the penalty method in the variational formulation; and both the direct iterative method and Newton‐Raphson iterative method are combined to solve the finite element equations. The forging process of a ball from a cylindrical workpiece is completely simulated by a remesh procedure. The computed results agree well with the experimental measurements. It is shown, during the early stage of plastic deformation, the effect of friction is small, but gradually increases with further plastic deformation. In the finishing stage, the shear plastic deformation is found mainly in the flash portion. As the shape factor of workpiece increases, the filling of the die cavity is more complete, but the required forming energy increases and the variation of microstructure within the final forged product is intensified. The effect of die velocity also improves die cavity filling.  相似文献   

11.
This paper examines the theoretical bases for the smoothed finite element method (SFEM), which was formulated by incorporating cell‐wise strain smoothing operation into standard compatible finite element method (FEM). The weak form of SFEM can be derived from the Hu–Washizu three‐field variational principle. For elastic problems, it is proved that 1D linear element and 2D linear triangle element in SFEM are identical to their counterparts in FEM, while 2D bilinear quadrilateral elements in SFEM are different from that of FEM: when the number of smoothing cells (SCs) of the elements equals 1, the SFEM solution is proved to be ‘variationally consistent’ and has the same properties with those of FEM using reduced integration; when SC approaches infinity, the SFEM solution will approach the solution of the standard displacement compatible FEM model; when SC is a finite number larger than 1, the SFEM solutions are not ‘variationally consistent’ but ‘energy consistent’, and will change monotonously from the solution of SFEM (SC = 1) to that of SFEM (SC → ∞). It is suggested that there exists an optimal number of SC such that the SFEM solution is closest to the exact solution. The properties of SFEM are confirmed by numerical examples. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Effective simulation of the solid‐liquid‐gas coupling effect in unsaturated porous media is of great significance in many diverse areas. Because of the strongly nonlinear characteristics of the fully coupled formulations for the three‐phase porous media, an effective numerical solution scheme, such as the finite element method with an efficient iterative algorithm, has to be employed. In this paper, an efficient finite element procedure based on the adaptive relaxed Picard method is developed for analyzing the coupled solid‐liquid‐gas interactions in porous media. The coupled model and the finite element analysis procedure are implemented into a computer code PorousH2M, and the proposed procedure is validated through comparing the numerical simulations with the experimental benchmarks. It is shown that the adaptive relaxed Picard method has salient advantage over the traditional one with respect to both the efficiency and the robustness, especially for the case of relatively large time step sizes. Compared with the Newton‐Raphson scheme, the Picard method successfully avoids the unphysical ‘spurious unloading’ phenomenon under the plastic deformation condition, although the latter shows a better convergence rate. The proposed procedure provides an important reference for analyzing the fully coupled problems related to the multi‐phase, multi‐field coupling in porous media. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract: This paper describes an experimental and an analytical investigation into the collapse of 44 circular cylindrical composite tubes under external hydrostatic pressure. The results for 22 of these tubes were from a previous investigation and the results for a further 22 models are reported for the first time in this paper. The investigations concentrated on fibre‐reinforced plastic tube specimens made from a mixture of three carbon and two E‐glass fibre layers. The lay‐up was 0°/90°/0°/90°/0; the carbon fibres were laid lengthwise (0°) and the E‐glass fibres circumferentially (90°). The theoretical investigations were carried out using a simple solution for isotropic materials, namely a well‐known formula by ‘von Mises’. The previous investigation also used a numerical solution based on ANSYS, but this was found to be rather disappointing. The experimental investigations showed that the composite specimens behaved similarly to isotropic materials previously tested, in that the short vessels collapsed through axisymmetric deformation while the longer tubes collapsed through non‐symmetric bifurcation buckling. Furthermore, it was discovered that the specimens failed at changes of the composite lay‐up due to the manufacturing process of these specimens. These changes seem to be the weak points of the specimens. For the theoretical investigations, two different types of material properties were used to analyse the composite. These were calculated properties derived from the properties of the single layers given by the manufacturer and also the experimentally obtained properties. Two different approaches were chosen for the investigation of the theoretical buckling pressures, of the previously analysed models, namely a program called ‘MisesNP’, based on a well‐known formula by von Mises for single‐layer isotropic materials, and two finite element analyses using the famous computer package called ‘ANSYS’. These latter analyses simulated the composite with a single‐layer orthotrophic element (Shell93) and also with a multi‐layer element (Shell99). The results from Shell93 and Shell99 agreed with each other but, in general, their predictions were higher than the analytical solution by von Mises. The von Mises solution agreed better than the finite element solutions for the longer vessels, which collapsed by elastic instability, particularly when the experimentally obtained material properties were used. Thus, it was concluded that the results obtained from the finite element analyses predicted ‘questionable’ buckling pressures. The report provides design charts by all approaches and material types, which allow the possibility of obtaining a ‘plastic knockdown factor’ for these vessels. The theoretical buckling pressures obtained using the computer programs MisesNP or ANSYS can then be divided by the plastic knockdown factor obtained from the design charts, to give the predicted buckling pressures. It is not known whether or not this method can be used for the design of very large vessels.  相似文献   

14.
The null stress (s 33 = 0) and incompressibility (J = 1) conditions in finite strain elasto-plastic shell analysis are studied in closed-form and implemented with a variant of the combined control by Ritto-Corrêa and Camotim. Coupling between constitutive laws and shell kinematics results from the satisfaction of either of the conditions; nonlocality results from the coupling. We prove that the conditions are, in general, incompatible. A new thickness-deformable is studied in terms of kinematics and strong-ellipticity. The affected continuum laws are derived and, in the discrete form, it is shown that thickness degrees-of-freedom and enhanced strains are avoided: a mixed displacement-shear strain shell element is used. Both hyperelastic and elasto-plastic constitutive laws are tested. Elasto-plasticity follows Lee’s decomposition and direct smoothing of the complementarity condition. A smooth root finder is employed to solve the resulting algebraic problem. Besides closed-form examples, numerical examples consisting of classical and newly proposed benchmarks are solved.  相似文献   

15.
Energy consistency for the material‐point method (MPM) is examined for thermodynamically consistent hyperelastic‐plastic materials. It is shown that MPM can be formulated with implicit, three‐ field variational, finite element algorithms which dissipate energy and conserve momentum for that class of material models. With a consistent mass matrix the resulting overall numerical method inherits the energy‐dissipative and momentum‐conserving properties of the mesh solution. Thus, the proposed MPM algorithm satisfies by construction a time‐discrete form of the second law of thermo‐ dynamics. Properties of the method are illustrated in numerical examples. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
17.
A finite element technique, for efficient solution of a class of 3-D elasticity problems, is presented. In this method, standard 2-D finite elements are used along with a ‘connector’ element. An element, previously used to model material interfaces, is shown to provide the properties for use as a ‘connector’ element, if input variables are redefined. The accuracy of the technique is illustrated with a sample solution.  相似文献   

18.
The dynamic finite element technique, which is referred to in the literature as ‘computer-analysis’, is applied to wave propagation problems occurring in finite and semi-infinite linearly elastic membranes of revolution. Both semi-infinite and finite versions of cylindrical and conical membranes are considered, and a finite membrane having a meridional curve which is parabolic is solved. The source of excitation is generally a constant velocity motion of one end of the membranes, but the results for a stress-pulse input at one end of a semi-infinite cylindrical membrane are also given. The results for the finite membranes are new, and the results for the semi-infinite problems are discussed with respect to previously published results. The two-dimensional state of stress in the membrane requires careful ordering of the calculations, and the boundary conditions for finite membranes are shown to follow logically from this ordering of the calculations. The difference in the solutions resulting from prescribing an axial or a tangential velocity excitation at the end of a conical membrane is presented, and the mesh size necessary for convergence to the solution is indicated. The graphs of the results clearly indicate regions in space and time where the membrane model should be replaced by the shell formulation to represent a realistic structure. The technique is shown to be self-contained and independent of any formal method such as the method of characteristics.  相似文献   

19.
A stabilized, mixed finite element formulation for modelling viscoplastic flow, which can be used to model approximately steady‐state metal‐forming processes, is presented. The mixed formulation is expressed in terms of the velocity, pressure and state variable fields, where the state variable is used to describe the evolution of the material's resistance to plastic flow. The resulting system of equations has two sources of well‐known instabilities, one due to the incompressibility constraint and one due to the convection‐type state variable equation. Both of these instabilities are handled by adding mesh‐dependent stabilization terms, which are functions of the Euler–Lagrange equations, to the usual Galerkin method. Linearization of the weak form is derived to enable a Newton–Raphson implementation into an object‐oriented finite element framework. A progressive solution strategy is used for improving convergence for highly non‐linear material behaviour, typical for metals. Numerical experiments using the stabilization method with hierarchic shape functions for the velocity, pressure and state variable fields in viscoplastic flow and metal‐forming problems show that the stabilized finite element method is effective and efficient for non‐linear steady forming problems. Finally, the results are discussed and conclusions are inferred. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
This is the first in a series of three papers in which we discuss a method for ‘post-processing’ a finite element solution to obtain high accuracy approximations for displacements, stresses, stress intensity factors, etc. Rather than take the values of these quantities ‘directly’ from the finite element solution, we evaluate certain weighted averages of the solution over the entire region. These yield approximations are of the same order of accuracy as the strain energy. We obtain error estimates, and also present some numerical examples to illustrate the practical effectiveness of the technique. In the third paper of this series we address the matters of adaptive mesh selection and a posteriori error estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号