首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Miscibility and morphology of poly(ethylene 2,6‐naphthalate)/poly(pentamethylene terephthalate)/poly(ether imide) (PEN/PPT/PEI) blends were studied by differential scanning calorimetry (DSC), optical microscopy (OM), proton nuclear magnetic resonance imaging (1H‐NMR), and wide‐angle X‐ray diffraction (WAXD). OM and DSC results from ternary blends revealed the immiscibility of PEN/PPT/PEI blends, but ternary blends of all compositions were phase‐homogeneous following heat treatment at 300°C for over 60 min. Annealing samples at 300°C yielded an amorphous blend with a clear and single Tg at the final state. Experimental data from 1H‐NMR revealed that PEN/PPT copolymers (ENPT) were formed by the so‐called transesterification. The effect of transesterification on glass transition and crystallization was discussed in detail. The sequence structures of the copolyester were identified by triad analysis, which showed that the mean sequence lengths became shorter and the randomness increased with heating time. The results reveal that a random copolymer improved the miscibility of the ternary blends, in which, the length of the homo segments in the polymer chain decreased and the crystal formation was disturbed because of the irregularity of the structure, as the exchange reaction proceeded. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3840–3849, 2006  相似文献   

2.
Blends composed of poly(ethylene terephthalate) (PET) as the majority component and poly(ethylene naphthalate)(PEN) as the minority component were melt-mixed in a single screw extruder at various PET/PEN compound ratios. Tensile and flexural test results reveal a good PET/PEN composition dependence, indicating that the compatibility of the blends is effective in a macrodomain. In thermal tests, single transitions for Tg, Tm and Tc (crystallization temperature), respectively, are observed from DSC as well as single Tg from DMA except for 50/50 blends. These results suggests that the compatibility is sufficient down to the submicron level. Moreover, isothermal DSC tests along with Avrami analysis indicate that PET's crystallization is significantly retarded when blended with PEN. Results in this study demonstrate that PEN is a highly promising additive to improve PET's spinnability at high speeds.  相似文献   

3.
The glass‐transition temperatures and melting behaviors of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends were studied. Two blend systems were used for this work, with PET and PEN of different grades. It was found that Tg increases almost linearly with blend composition. Both the Gibbs–DiMarzio equation and the Fox equation fit experimental data very well, indicating copolymer‐like behavior of the blend systems. Multiple melting peaks were observed for all blend samples as well as for PET and PEN. The equilibrium melting point was obtained using the Hoffman–Weeks method. The melting points of PET and PEN were depressed as a result of the formation of miscible blends and copolymers. The Flory–Huggins theory was used to study the melting‐point depression for the blend system, and the Nishi–Wang equation was used to calculate the interaction parameter (χ12). The calculated χ12 is a small negative number, indicating the formation of thermodynamically stable, miscible blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 11–22, 2001  相似文献   

4.
Xixian Zhou 《Polymer》2006,47(18):6362-6378
The effect of biaxial stretching and annealing on the structure development in ternary blends of PEN/PEI/PEEK on mostly PEN-rich compositions has been investigated. Both PEN and PEEK are melt miscible with PEI. The addition of PEI greatly suppresses the crystallizability of the PEN while enhancing the glass transition temperature. The addition of PEEK to high PEI containing PEN/PEI recovers this crystallizability with the end result being the high Tg materials that can strain harden. The crystallization habit is mostly PEN at PEN-rich corner of the ternary diagram. The increase of PEI concentration beyond 20% eliminates the crystallizability of PEN and addition of as little as 10% PEEK causes these blends to crystallize upon stretching in the rubbery state.  相似文献   

5.
The phase structure of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends was studied in relation to the molecular weight. The samples were prepared by both solution blends, which showed two glass‐transition temperatures (Tg), and melt blends (MQ), which showed a single Tg, depending on the composition of the blends. The Tg of the MQ series was independent of the molecular weight of the homopolymer, although the degree of transesterification in the blends was affected by the molecular weight. The MQ series showed two exotherms during the heating process of a differential scanning calorimetry scan. The peak temperature and the heat flow of the exotherms were affected by the molecular weight of the homopolymers. The strain‐induced crystallization of the MQ series suggested the independent crystallization of PET and PEN. Based on the results, a microdomain structure of each homopolymer was suggested. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2428–2438, 2005  相似文献   

6.
Binary blends of the sulfonated poly(ether ether ketone) (SPEEK)–poly(ether imide) (PEI) and SPEEK–polycarbonate (PC), and ternary blends of the SPEEK–PEI–PC, were investigated by differential scanning calorimetry. SPEEK was obtained by sulfonation of poly(ether ether ketone) using 95% sulfuric acid. From the thermal analysis of the SPEEK–PEI blends, single glass transition temperature (Tg) was observed at all the blend composition. For the SPEEK–PC blends, double Tgs were observed. From the results of thermal analysis, it is suggested that the SPEEK–PEI blends are miscible and the SPEEK–PC blends are immiscible. Polymer–polymer interaction parameter (χ12) of the SPEEK–PEI blends was calculated from the modified Lu and Weiss equation, and found to range from −0.011 to −0.825 with the blend composition. For the SPEEK–PC blends, the χ12 values were calculated from the modified Flory–Huggins equation, and found to range from 0.191 to 0.272 with the blend composition. For the SPEEK–PEI–PC ternary blends, phase separation regions that showed two Tgs were found to be consistent with the spinodal curves calculated from the χ12 values of the three binary blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2488–2494, 2000  相似文献   

7.
The compatibilization of blends of poly(ethylene‐2,6‐naphthalate) (PEN) with polystyrene (PS), through the styrene‐glycidyl methacrylate copolymers (SG) containing various glycidyl methacrylate (GMA) contents, was investigated in this study. SG copolymers are able to react with PEN terminal groups during melt blending, resulting in the formation of desirable SG‐g‐PEN copolymers in the blend. These in situ formed copolymers tend to reside along the interface preferentially as the result of interfacial reaction and thus function as effective compatibilizers in PEN/PS blends. The compatibilized blends exhibit higher viscosity, finer phase domain, and improved mechanical properties. It is found that the degree of grafting of the in situ formed SG‐g‐PEN copolymer has to be considered as well. In blends compatibilized with the SG copolymer containing higher GMA content, heavily grafted copolymers would be produced. The length of the styrene segment in these heavily grafted copolymers would be too short to penetrate deep enough into the PS phase to form effective entanglements, resulting in the lower compatibilization efficiency in PEN/PS blends. Consequently, the in situ formation of SG‐g‐PEN copolymers with an optimal degree of grafting is the key to achieving the best performance for the eventually produced PEN/PS blends through SG copolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 967–975, 2003  相似文献   

8.
Rosario E.S. Bretas  Donald G. Baird   《Polymer》1992,33(24):5233-5244
This paper is concerned with a novel ternary blend composed of poly(ether imide) (PEI), poly(ether ether ketone) (PEEK) and a liquid crystalline polymer (LCP; HX4000, Du Pont). Different compositions were prepared by extrusion and injection moulding. Dynamic mechanical thermal analysis and the observation of the fracture surfaces, before and after annealing, allowed determination of the cold crystallization temperatures and miscibility behaviour of these systems. PEEK/PEI blends are known from previous studies to be miscible at all compositions. In this case it was observed that the PEEK/HX4000 blend was miscible up to 50 wt% HX4000 but partially miscible above this value. The PEI/HX4000 blends were found to be partially miscible in the whole concentration range. As a result, some ternary blend compositions exhibited only one phase, while others exhibited two phases. The measurement of the tensile properties showed that ternary blends with high modulus can be obtained at high LCP loadings, while compositions with high ultimate tensile strength can be obtained with high loadings of PEI or PEEK.  相似文献   

9.
The effect of poly(D ,L ‐lactide‐copara‐dioxanone) (PLADO) as the compatibilizer on the properties of the blend of poly(para‐dioxanone) (PPDO) and poly(D ,L ‐lactide) (PDLLA) has been investigated. The 80/20 PPDO/PDLLA blends containing from 1% to 10% of random copolymer PLADO were prepared by solution coprecipitation. The PLADO component played a very important role in determining morphology, thermal, mechanical, and hydrophilic properties of the blends. Addition of PLADO into the blends could enhance the compatibility between dispersed PDLLA phase and PPDO matrix; the boundary between the two phases became unclear and even the smallest holes were not detected. On the other hand, the position of the Tg was composition dependent; when 5% PLADO was added into blend, the Tg distance between PPDO and PDLLA was shortened. The blends with various contents of compatibilizer had better mechanical properties compared with simple PPDO/PDLLA binary polymer blend, and such characteristics further improved as adding 5% random copolymers. The maximum observed tensile strength was 29.05 MPa for the compatibilized PPDO/PDLLA blend with 5% PLADO, whereas tensile strength of the uncompatibilized PPDO/PDLLA blend was 14.03 MPa, which was the lowest tensile strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Blends of bisphenol-A polycarbonate (PC) with poly- (styrene-co-acrylonitrile) (SAN) and poly (acrylonitrile-butadiene-styrene) (ABS) prepared by screw extrusion and solution-casting were investigated by differential scanning calorimetry and scanning electron microscopy. From the measured glass-transition temperatures (Tg) and specific heat increments (ΔCp) at the Tg, SAN appears to dissolve more in the PC-rich phase than does PC in the SAN-rich phase. Also, the decrease of Tg (PC) in PC/ABS blends is larger than in the PC/SAN blends. From the Tg behavior and the electron microscopy study, it is suggested that the compatibility increases more in the SAN-rich compositions than in the PC-rich compositions of the blends. In the study of extrudate swell of the PC/SAN blends and the PC/ABS blends, the maximum level of extrudate swell is reached at 0.5 weight fraction of PC for both blend systems. The Flory-Huggins polymer-polymer interaction parameter (χ12) between PC and SAN was calculated and found to be 0.034 ± 0.004. A similar value of χ for PC and SAN was found with the PC/ABS blends.  相似文献   

11.
Summary Miscibility of blends of poly(ether imide) (PEI) and poly(ethylene terephthalate) (PET) were studied by differential scanning calorimetry (DSC). Single and composition-dependent Tg's are observed over the entire composition range, indicating that the blends are miscible in the amorphous region. The overall crystallization rate of PET in the blends decreased with increasing the PEI content. The interaction energy density B, which was calculated from the melting point depression of the blends using Nishi-Wang equation, was-5.5 cal/cm3.  相似文献   

12.
The miscibility and phase behavior of polysulfone (PSF) and poly(hydroxyether of bisphenol A) (phenoxy) with a series of copoly (ether ether ketone) (COPEEK), a random copolymer of poly(ether ether ketone) (PEEK), and phenolphthalein poly(ether ether ketone) (PEK-C) was studied using differential scanning calorimetry. A COPEEK copolymer containing 6 mol % ether ether ketone (EEK) repeat units is miscible with PSF, whereas copolymers containing 12mol % EEK and more are not. COPEEK copolymers containing 6 and 12 mol % EEK are completely miscible with phenoxy, but those containing 24 mol % EEK is partially miscible with phenoxy. Moreover, a copolymer containing 17 mol % EEK is partially miscible with phenoxy; the blends show two transitions in the midcomposition region and single transitions at either extreme. Two Tgs were observed for the 50/50 blend of phenoxy with the coplymer containing 17 mol % EEK, whereas a single composition-dependent Tg appeared for all the other compositions. An FTIR study revealed that there exist hydrogen-bonding interactions between phenoxy and the copolymers. The strengths of the hydrogen-bonding interactions in the blends of the COPEEK copolymers containing 6 and 12 mol % EEK are the same as that in the phenoxy/PEK-C blend. However, for the blends of copolymers containing 17, 24, and 28 mol % EEK, the hydrogen-bonding interactions become increasingly unfavorable and the self-association of the hydroxyl groups of phenoxy is preferable as the content of EEK units in the copolymer increases. The observed miscibility was interpreted qualitatively in terms of the mean-field approach. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Amorphous films of poly(ethylene terephthalate)/poly(ethylene-2,6-naphthalate) (PET/PEN) blends with different blend ratios were uniaxially drawn by solid-state coextrusion and the structure development during solid state deformation was studied. As-prepared blends showed two Tgs. The lower Tg was ∼72 °C, independent of the blend ratio. In contrast, the higher Tg increased with increasing PEN content. Thus, the coextrusion was carried out around the higher Tg of the sample. At a given draw ratio of 5, which was close to the achievable maximum draw ratio, the tensile strength of the drawn samples from the initially amorphous state increased gradually with increasing PEN content. On the other hand, the tensile modulus was found to decrease initially, reaching a minimum at 40-60 wt% PEN, and then increased as the PEN content increased. The results indicate that we can get the drawn films with a moderate tensile modulus and a high tensile strength. The drawn samples from the blends containing 40-60 wt% of PEN showed a maximum elongation at break, and a maximum thermal shrinkage around 100 °C. Also, the degree of stress-induced crystallinity showed a broad minimum around the blend ratio of 50% of PEN. These morphological characteristics explained well the effects of blend ratio on the tensile modulus and strength of drawn PET/PEN blend films.  相似文献   

14.
Summary Blends containing poly(N-vinyl-2-pyrrolidone) (PVP) and poly(hydroxyethyl methacrylate) (PHEMA) with (styrene-co-dimethyl itaconate) (Sty-co-DMI) and (styrene-co-diethylitaconate) (Sty-co-DEI) copolymers of three different compositions were studied. One Tg value over the whole range of compositions is observed for the majority of the blends, what is indicative of compatibility. The Gordon-Taylor kGT and the Couchman kC parameters were determined for all the blends in order to compare the strength of the interactions. The effect of the side chain structure of the copolymer on the miscibility of these blends is analyzed.  相似文献   

15.
G.A. Zakrzewski 《Polymer》1973,14(8):347-351
Various methods were used to study the compatibility of butadiene-acrylonitrile copolymers with poly(vinyl chloride). These blends were investigated by phase contrast microscopy, differential scanning calorimetry and torsion pendulum analysis. We conclude that the copolymers are compatible with poly(vinyl chloride) in all PVC compositions within the range 23–45% acrylonitrile. These blends exhibit a single Tg in the torsion pendulum studies and differential scanning calorimetry studies and follow a Fox expression in the variation of Tg with composition. Experimental densities are also higher than those calculated assuming volume additivity, implying better packing and a negative heat of mixing leading to molecular compatibility.  相似文献   

16.
The effect of electron beam (EB) irradiation on the properties and compatibility of poly(ethylene 2,6‐naphthalate) (PEN)/poly(ethylene terephthalate) (PET) blends was investigated. Upon EB irradiation, PEN/PET blends underwent transesterification reactions, resulting in the formation of more random copolymers from the original binary pair. The degree of transesterification increased with dose rate, and all of the irradiated blends exhibited a single glass transition temperature. This indicated that transesterification reactions promoted by EB irradiation led to the formation of a single phase. Transesterification reactions promoted by EB irradiation led to more random copolymers, and the reduced regularity in the irradiated blends decreased the melting temperature. A higher degree of randomness and lower number‐average sequence lengths for the blend systems indicated that a more random chain structure was formed in the blends. The rheological measurements demonstrated that the irradiated PEN/PET blends were miscible. EB irradiation could promote transesterification reaction, thus enhancing the compatibility of PEN/PET blends.  相似文献   

17.
Miscibility, phase diagrams and morphology of poly(ε‐caprolactone) (PCL)/poly(benzyl methacrylate) (PBzMA)/poly(styrene‐co‐acrylonitrile) (SAN) ternary blends were investigated by differential scanning calorimetry (DSC), optical microscopy (OM), and scanning electron microscopy (SEM). The miscibility window of PCL/PBzMA/SAN ternary blends is influenced by the acrylonitrile (AN) content in the SAN copolymers. At ambient temperature, the ternary polymer blend is completely miscible within a closed‐loop miscibility window. DSC showed only one glass transition temperature (Tg) for PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 ternary blends; furthermore, OM and SEM results showed that PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 were homogeneous for any composition of the ternary phase diagram. Hence, it demonstrated that miscibility exists for PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 ternary blends, but that the ternary system becomes phase‐separated outside these AN contents. Copyright © 2003 Society of Chemical Industry  相似文献   

18.
Poly (vinyl chloride), PVC, and poly(vinylidene fluoride), PVDF, are incompatible polymers. Poly(neopentyl glycol adipate), PDPA, is miscible with both PVC and PVDF. With PDPA acting as a compatibilizer between PVC and PVDF. compatible PVC/PDPA/PVDF blends can be formed at PVDF content of about less than 50wt%. Above 50wt% PVDF the ternary blends exist in two phases exhibiting two glass transition temperatures, Tg, PVC is the main contributor to the mechanical strength while PDPA and PVDF contribute to the elastic properties of these blends. A compatible blend of 55/22.5/22.5 wt% PVC/PDPA/PVDF exhibiting one single Tg appears to show an interesting balance of the properties of the blend components.  相似文献   

19.
The miscibility and melting behavior of binary crystalline blends of poly(ethylene terephthalate) (PET)/poly(trimethylene terephthalate) (PTT) have been investigated with differential scanning calorimetry and scanning electron microscope. The blends exhibit a single composition‐dependent glass transition temperature (Tg) and the measured Tg fit well with the predicted Tg value by the Fox equation and Gordon‐Taylor equation. In addition to that, a single composition‐dependent cold crystallization temperature (Tcc) value can be observed and it decreases nearly linearly with the low Tg component, PTT, which can also be taken as a valid supportive evidence for miscibility. The SEM graphs showed complete homogeneity in the fractured surfaces of the quenched PET/PTT blends, which provided morphology evidence of a total miscibility of PET/PTT blend in amorphous state at all compositions. The polymer–polymer interaction parameter, χ12, calculated from equilibrium melting temperature depression of the PET component was ?0.1634, revealing miscibility of PET/PTT blends in the melting state. The melting crystallization temperature (Tmc) of the blends decreased with an increase of the minor component and the 50/50 sample showed the lowest Tmc value, which is also related to its miscible nature in the melting state. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
The morphology, crystallisation and melting behaviour of binary blends prepared by extruding mixtures containing different amounts of starch valerate (SV) and a poly(3-hydroxybutyrate-co-hydroxyvalerate) copolymer have been investigated by optical and scanning electron microscopy, differential scanning calorimetry, dynamic mechanical thermal analysis and mechanical tensile tests. The absence of apparent phase separation, the increase in spherulite dimensions and the decrease of radial growth rate with increasing SV content, as well as the presence of a single composition-dependent Tg value, evidenced a high degree of compatibility between the two components, up to 20 wt.-% of SV. For higher SV contents, phase separation occurred, confirmed by the appearance of the Tg values of the pure components in thermal analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号