首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
The morphology and the mechanical properties of polycarbonate (PC) blends with different acrylonitrile–butadiene–styrene (ABS) materials were investigated. PC/ABS blends based on a mass-made ABS with 16% rubber and large (0.5–1μm) rubber particles are compared to blends based on an emulsion-made ABS with 50% rubber and small, monodisperse (0.12 μm) rubber particles over the full range of blend compositions. The blends with the bulk ABS showed excellent impact strength for most compositions, and those containing 50 and 70% PC exhibited ductile to brittle transition temperatures below that of PC. The blends with the emulsion ABS showed excellent toughness in sharp notch Izod impact tests at room temperature and in standard notch Izod impact tests at low temperatures near the Tg of the rubber. By melt blending the various ABS materials with a styrene–acrylonitrile (SAN 25) copolymer, materials with lower rubber concentrations were obtained. These materials were used in blends with PC to make comparisons at constant rubber concentration of 5, 10, and 15%. The results of this investigation show that brittle ABS materials can produce tough PC–ABS blends. It is apparent that small rubber particles toughen PC–ABS blends at lower rubber concentrations and at lower temperatures than is possible with large rubber particles. However, additional work is needed to understand the nature of toughening in these PC–ABS blends with different rubber phase morphologies. It is of particular interest to understand the exceptional ductility of some of the blends at low temperatures. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The morphology and mechanical properties of polycarbonate (PC) blends with rubber‐toughened styrene–maleic anhydride copolymer materials (TSMA) were investigated and compared with the properties of blends of PC with acrylonitrile–butadiene–styrene (ABS) materials. The PC/TSMA blends showed similar composition dependence of properties as the comparable PC/ABS blends. Polycarbonate blends with TSMA exhibited higher notched Izod impact toughness than pure PC under sharp‐notched conditions but the improvements are somewhat less than observed for similar blends with ABS. Since PC is known for its impact toughness except under sharp‐notched conditions, this represents a significant advantage of the rubber‐modified blends. PC blends with styrene–maleic anhydride copolymer (SMA) were compared to those with a styrene–acrylonitrile copolymer (SAN). The trends in blend morphology and mechanical properties were found to be qualitatively similar for the two types of copolymers. PC/SMA blends are nearly transparent or slightly pearlescent. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1508–1515, 1999  相似文献   

3.
This study attempted to correlate morphological changes and physical properties for a high rubber content acrylonitrile–butadiene–styrene (ABS) and its diluted blends with a poly(styrene‐co‐acrylonitrile) (SAN) copolymer. The results showed a close relationship between rubber content and fracture toughness for the blends. The change of morphology in ABS/SAN blends explains in part some deviations in fracture behavior observed in ductile–brittle transition temperature shifts. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2606–2611, 2004  相似文献   

4.
Poly(butylene terephthalate) (PBT) crystallization behavior is modified by blending it with acrylonitrile‐butadiene‐styrene copolymers (ABS). The effects of ABS on melting and crystallization of PBT/ABS blends have been examined. Most ABS copolymers of different rubber content and styrene/acrylonitrile ratios studied showed little effect on the melting behavior of PBT crystalline phase. However, ABS copolymer with high acrylonitrile content had a significant effect on the crystallization behavior of the PBT/ABS blends. The nucleation rate of the PBT crystalline phase decreased due to the presence of the high acrylonitrile content ABS, whereas the spherulitic growth rate increased significantly. These phenomena are attributed to changes in nucleation and growth mechanisms of PBT crystalline phase promoted by ABS. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 423–430, 1999  相似文献   

5.
The aim of this work within the framework of mechanical recycling of polymers is upgrading recycled engineering plastics by means of a blending technique. Four different plastics from dismantled Volvo cars have been investigated. They are poly(acrylonitrile‐butadiene‐styrene) (ABS) and ABS‐polycarbonate (ABS/PC) as major components and poly(methyl methacrylate) (PMMA) and polyamide (PA) as minor components. Blending recycled ABS and PC/ABS (70/30) with a small amount of methyl methacrylate‐butadiene‐styrene core‐shell impact modifiers gives the mixture better impact properties than any of its individual components. Some 10% of PMMA from tail light housings can follow the PC/ABS blends made. The property profile will rather be improved. However, PA is an incompatible component that should be sorted out from the mixture. Antioxidants and metal deactivators do not help the recyclates show better mechanical properties. Two toughness measurements, Charpy impact strength and J‐integral method, show complimentary results for such blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 510–515, 1999  相似文献   

6.
In a systematic manner, the roles of MWNTs as filler and styrene acrylonitrile copolymer‐graft‐maleic anhydride (SAN‐MA) as compatibilizer, individually and together, on dynamic‐mechanical behavior of polycarbonate (PC)‐rich/acrylonitrile butadiene styrene terpolymer (ABS) blend were studied. The investigations were performed using small‐scale mixing in a one‐step procedure with a fixed MWNTs content of 0.75 wt% and a blend composition of PC/ABS = 70/30 w/w. PC/SAN blends and nanocomposites as simpler model system for PC/ABS were also studied to reveal the role of the rubbery polybutadiene (PB) fraction. It is found that the tendency of MWNTs to localize within the PC component in compatibilized PC/ABS was lower than in compatibilized PC/SAN blends. Dynamic mechanical analysis (DMA) revealed the dual role of SAN‐MA as blend compatibilizer and also promoter of MWNTs migration towards PC, where SAN‐MA to MWNTs weight ratio varied between 1 and 4. At the compatibilizer/MWNTs weight ratio of 1, MWNTs localized in PC component of the blends whereas increasing the compatibilizer/MWNTs ratio to 4 led to migration of MWNTs toward SAN or ABS component. In DMA studies, loss modulus normalization of the nanocomposites revealed the coexistence of mobilized and immobilized regions within the nanocomposite structure, as a result of MWNTs and compatibilizer loading. POLYM. ENG. SCI., 54:2696–2706, 2014. © 2014 Society of Plastics Engineers  相似文献   

7.
Styrene‐acrylonitrile random copolymer (SAN) and polyarylate (PAr) block copolymer were applied as a reactive compatibilizer for polyamide‐6 (PA‐6)/acrylonitrile‐butadiene‐styrene (ABS) copolymer blends. The SAN–PAr block copolymer was found to be effective for compatibilization of PA‐6/ABS blends. With the addition of 3.0–5.0 wt % SAN–PAr block copolymer, the ABS‐rich phase could be reduced to a smaller size than 1.0 μm in the 70/30 and 50/50 PA‐6/ABS blends, although it was several microns in the uncompatibilized blends. As a result, for the blends compatibilized with 3–5 wt % block copolymer the impact energy absorption reached the super toughness region in the 70/30 and 50/50 PA‐6/ABS compositions. The compatibilization mechanism of PA‐6/ABS by the SAN–PAr block copolymer was investigated by tetrahydrofuran extraction of the SAN–PAr block copolymer/PA‐6 blends and the model reactions between the block copolymer and low molecular weight compounds. The results of these experiments indicated that the SAN–PAr block copolymer reacted with the PA‐6 during the melt mixing process via an in situ transreaction between the ester units in the PAr chain and the terminal amine in the PA‐6. As a result, SAN–PAr/PA‐6 block copolymers were generated during the melt mixing process. The SAN–PAr block copolymer was supposed to compatibilize the PA‐6 and ABS blend by anchoring the PAr/PA‐6 and SAN chains to the PA‐6 and ABS phases, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2300–2313, 2002  相似文献   

8.
王硕  刘哲  盛光  吕洁  郭阳  李刚 《弹性体》2010,20(1):46-52
采用种子乳液聚合技术在聚丁二烯(PB)乳胶粒子上接枝共聚苯乙烯(St)、α-甲基苯乙烯(α—MSt)和丙烯腈(AN)单体,合成了一系列不同AN结合量的ABS和α—MABS接枝共聚物。将其与聚氯乙烯(PVC)树脂熔融共混制得了PVC/AtkS共混物,利用扫描电镜(SEM)、透射电镜(TEM)和动态力学分析仪(DMA)对共混物的相容性和相结构进行了表征。结果发现,在PVC/ABS共混体系中,尽管改变接枝SAN共聚物的AN结合量,PVC和ABS接枝共聚物均为不相容体系;在ABS接枝共聚物中引入α-MSt后,当接枝SAN共聚物的AN结合量为18.7%~23.6%(质量分数)时,共混物在室温以上只存在1个tanδ峰,共混物成为相容体系,当AN结合量达到32.1%(质量分数)时,共混物成为部分相容体系。共混物的相区尺寸明显地依赖于接枝SAN共聚物中的AN结合量,与动态力学性能结果表现出良好的吻合。  相似文献   

9.
赵文杰  韩莹  李海东 《弹性体》2012,22(5):63-67
采用胶含量(质量分数,下同)为60%的丙烯腈-丁二烯-苯乙烯接枝共聚物(ABS)接枝粉料与苯乙烯-丙烯腈共聚物(SAN)以不同比例进行共混,制备了胶含量范围为10%~55%的ABS树脂.将胶含量不同的ABS树脂与聚碳酸酯(PC)以30/70、50/50、70/30的质量比利用熔融共混技术,制备了组成不同的PC/ABS共混物,考察了ABS树脂胶含量对不同组成的PC/ABS合金性能的影响.研究结果表明:随着ABS树脂中胶含量的增加,ABS树脂的冲击强度不断提高,屈服强度、模量及熔体流动速率逐渐降低.随着PC/ABS合金中ABS胶含量的增加,合金的冲击强度显著提高,ABS树脂中胶含量大于30%以后,合金的冲击强度变化不大,且3种组成的PC/ABS合金的冲击强度相差不大.合金的屈服强度、模量及熔体流动速率却随着ABS中胶含量的增加不断降低,其中组成为30/70的PC/ABS合金最低.利用扫描电镜观察了PC/ABS组成为70/30合金的微观结构,研究表明,ABS树脂形成连续相,PC为分散相,随ABS树脂胶含量的增加,合金的相形态变得更精细.  相似文献   

10.
制备不同配比的丙烯腈-丁二烯-苯乙烯(ABS)/苯乙烯-丙烯腈(SAN)/中粘度聚甲基丙烯酸甲酯(PMMA)合金,分别测试其缺口冲击强度、拉伸强度、热变形温度、熔体流动指数等,结果表明:ABS/SAN可以引发中粘度PMMA产生大量的银纹,从而大幅度提高共混物的冲击强度;引入中粘度PMMA可以提高ABS/SAN的耐热性能;添加中粘度PMMA,合金的流动性能呈现下降的趋势。  相似文献   

11.
本实验采用胶含量为60%的ABS接枝粉料与SAN树脂以不同比例进行共混,制备了胶含量范围为10%~55%的ABS树脂。将胶含量不同的ABS树脂与PC以30/70、50/50、70/30的比例利用熔融共混技术,制备了组成不同的PC/ABS共混物。利用SEM电镜观察了PC/ABS合金的微观结构。研究表明,ABS树脂含量为30%时,在合金中形成分散相;ABS树脂含量为70%时,形成连续相;ABS树脂含量为50%时与PC形成双连续相结构。在三种结构中,ABS树脂胶含量的增加都使合金的相形态变得更精细。  相似文献   

12.
ABSTRACT

The effect of rubber content of poly (acrylonitrile butadiene styrene) (ABS) on compatibility and properties of polycarbonate (PC)/ABS blend systems has been investigated. The rheological, mechanical, physical, and thermal properties of PC/ABS blend systems containing ABS of different rubber content were studied. The reduced torque data on Torque Rheocord indicated improved processability of PC by addition of ABS, however, in ABS-rich compositions, higher rubber content reduces the extent of improvement. The tensile strength of PC decreased with addition of ABS to it but PC-rich compositions have a nearly additive response. The deviation form additivity for blends having higher rubber ABS was more pronounced. However, the impact strength of blends having higher rubber ABS were higher than other types and showed a positive deviation from additivity with variation in compositions. The blends containing ABS with lower rubber content showed a single glass-transition temperature (Tg) in differential scanning calorimetry studies (DSC) in the whole composition range indicating miscibility. Although two Tgs, one associated with PC phase and one with ABS phase, were observed for blends containing high rubber ABS, the shift in Tgs with respect to pure component values indicates partial miscibility. The decrease in the extent of shift with increase of ABS in these blends indicates undesirable phase separation due to poor adhesion of higher level of rubber content.  相似文献   

13.
Polyamide (PA) and acrylonitrile/butadiene/styrene copolymer (ABS) may appear as a mixture in the recycled plastic stream. The incompatibility of these blends results in a blend with poor mechanical properties. The aim of this work is to partially convert the nitrile groups of the acrylonitrile/styrene copolymer (SAN) into oxazoline groups by reaction with aminoethanol (AE). Such modified SAN (SAN‐m) can react with the amine or carboxylic acid end groups of PA, and therefore used as compatibilizers for blends of PA with ABS. SAN‐m was found to reduce the SAN‐domain size in the PA/SAN‐blends. The initial acrylonitrile content of SAN‐m had a strong influence on the degree of conversion into oxazoline groups and on the compatibilizing effect. Mechanical properties of SAN‐m compatibilized PA/ABS blends were investigated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 449–455, 2002  相似文献   

14.
The effect of the molecular weight and acrylonitrile (AN) content of the styrene–acrylonitrile copolymer (SAN) on the morphology, mechanical properties, and rheological properties of acrylonitrile–butadiene–styrene terpolymer/poly(methyl methacrylate) (ABS)/PMMA (60/40 by weight) blends were studied. When the AN content of matrix SAN (32%) was close to that of graft SAN (30%) AN, rubber particles existed separately. However, with matrix SAN having 35% AN, rubber particles showed tendency to agglomerate each other. With increasing molecular weight of matrix SAN, impact strength, ultimate elongation, and abrasion resistance of the blend generally increased. Yield strength increased with molecular weight at a constant AN content of matrix SAN, and it decreased with the decrease of AN content in spite of the increasing molecular weight of SAN. Melt properties, rather than the morphological and mechanical properties, were more sensitive to the AN content, rather than the molecular weight of matrix SAN. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
Amorphous polyamide (aPA)/acrylonitrile‐styrene copolymer (SAN) blends were prepared using methyl methacrylate‐maleic anhydride copolymer MMA‐MA as compatibilizer. The aPA/SAN blends can be considered as a less complex version of the aPA/ABS (acrylonitrilebutadiene‐styrene) blends, due to the absence of the ABS rubber phase in the SAN material. It is known that acrylic copolymer might be miscible with SAN, whereas the maleic anhydride groups from MMA‐MA can react in situ with the amine end groups of aPA during melt blending. As a result, it is possible the in situ formation of aPA‐g‐MMA‐MA grafted copolymers at the aPA/SAN interface during the melt processing of the blends. In this study, the MA content in the MMA‐MA copolymer and its molecular weight was varied independently and their effects on the blend morphology and stress–strain behavior were evaluated. The morphology of the blends aPA/SAN showed a minimum in the SAN particle size at low amounts of MA in the compatibilizer, however, as the MA content in the MMA‐MA copolymer was increased larger SAN particle sizes were observed in the systems. In addition, higher MA content in the compatibilizer lead to less ductile aPA/SAN blends under tensile testing. The results shown the viscosity ratio also plays a very important role in the morphology formation and consequently on the properties of the aPA/SAN blends studied. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Acrylonitrile–butadiene–styrene (ABS) shows excellent impact resistance and good stiffness. The incorporation of thermoplastic elastomer into ABS may consist in an interesting approach to further improve the toughness of ABS, in addition to tuning its compatibility with reinforcements. Blends of ABS and styrene–butadiene–styrene (SBS) were obtained by extrusion from different types of ABS with different SBS contents. The results showed that morphology and mechanical behavior of ABS/SBS blends depend strongly on the composition and characteristics of ABS matrix. An increase in elongation at break and slight decrease in modulus could be observed by increasing SBS content. ABS/SBS blend possessing good dispersion of rubber particles with sizes ranging from 0.1 to 0.8 μm of rubber particles exhibited the better performance of the impact resistance, whereas blends showing a predominance of relatively large particles resulted on poorer mechanical properties. These results suggest that viscosity and composition of ABS matrix play a significant role on the dispersion and coalescence of the dispersed phase during mixing. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47075.  相似文献   

17.
Compatibility, morphology structure, and mechanical properties of CPVC/ABS (Chlorinated polyvinyl chloride/acrylonitrile‐butadiene‐styrene) blends were studied. The core‐shell ratios of ABS were set at 40/60 and 70/30. The interface interactions between ABS and CPVC were changed by modifying the acrylonitrile (AN) content of the shell. The compatibility of CPVC with the shell of ABS was studied by the blends of CPVC/SAN with different AN content in SAN. Dynamic mechanical analysis results of CPVC/SAN were in accordance with the morphological properties of CPVC/ABS. The mechanical properties of CPVC/ABS blends in which the polybutadiene content was set to 15 wt % were studied. Results showed, with the change of AN content, the impact strength followed different way for CPVC/ABS blends with different core‐shell ratios of ABS because of the influence of the compatibility. When the core‐shell ratio was 40/60, the CPVC/ABS blends were much ductile in more widely AN range than the blends, whereas the core‐shell ratio of ABS was 70/30. The differences also showed in the SEM micrographs by the investigation of toughening mechanism. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
A series of acrylonitrile–butadiene–styrene (ABS) copolymer/poly(butylene terephthalate) (PBT)/acrylonitrile‐styrene‐glycidyl methacrylate (ASG) blends with various compositions were prepared and characterized in this study. When the fraction of ABS exceeds a critical value there is a rapid increase in notched impact strength of ABS/PBT blends no matter whether the compatibilizer ASG is present. By combining morphology observation and notched impact results, we found that the ductile‐brittle transition of the blends is closely related to the morphology inversion. The notched impact strength jumps from 15.9 to 33.4 kJ/m2 when phase inversion of ABS occurs at its fraction of 58 wt %. Accordingly, a possible toughening mechanism involved in the blends is proposed on the basis of a careful analysis of fracture energy, crack propagation behavior and fracture surface morphology. It is believed that the continuous ABS phase plays the critical role in toughening ABS/PBT blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46051.  相似文献   

19.
采用以乳液聚合的方法合成丙烯腈-丁二烯-苯乙烯共聚物(ABS)接枝粉料,将其与PVC、苯乙烯/丙烯腈共聚物(SAN)树脂熔融共混制备PVC/SAN/ABS共混物。恒定共混物中ABS含量,改变体系中SAN与PVC的比例从70.5/17.5至18/70。TEM分析表明,当共混物中SAN含量较多时,可以观察到银纹的存在;当共混物中PVC含量较多,可以观察到剪切屈服的发生;SEM分析发现,当共混物中PVC含量较多时,断裂表面出现了大量的空洞并伴随着基体的塑性流动;SAXS分析表明,当共混物中SAN的含量较多时,散射强度的增加是银纹的贡献能力增大的结果。  相似文献   

20.
The aim of this work is to evaluate routes to upgrade recycled engineering plastics, especially mixed plastics with acrylonitrile–butadiene–styrene copolymers (ABS) as the major component. A core‐shell impact modifier was successfully used to improve the impact strength of blends of ABS and ABS/polycarbonate (PC) blends recycled from the automotive industry. However, the presence of other immiscible components like polyamide (PA), even in small amounts, can lead to a deterioration in the overall properties of the blends. A styrene–maleic anhydride (SMA) copolymer and other commercial polymer blends were used to promote the compatibilization of ABS and PA. The core‐shell impact modifier was again found to be an efficient additive with regard to the impact strength of the compatibilized ABS/PA blends. The results obtained with fresh material blends were quite promising. However, in blends of recycled ABS and glass‐fiber‐reinforced PA, the impact strength did not exhibit the desired behavior. The presence of poorly bonded glass fibers in the blend matrix was the probable reason for the poor impact strength compared with that of a blend of recycled ABS and mineral‐filled PA. Although functionalized triblock rubbers (SEBS–MA) can substantially enhance the impact strength of PA, they did not improve the impact strength of ABS/PA blends because the miscibility with ABS is poor. The possibilities of using commercial polymer blends to compatibilize otherwise incompatible polymer mixtures were also explored giving promising results. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2535–2543, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号