首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article reports on a facile route for the preparation of methyl acrylate and methyl methacrylate graft copolymers via a combination of catalytic olefin copolymerization and atom transfer radical polymerization (ATRP). The chemistry first involved a transforming process from ethylene/allylbenzene copolymers to a polyolefin multifunctional macroinitiator with pendant sulfonyl chloride groups. The key to the success of the graft copolymerization was ascribed to a fast exchange rate between the dormant species and active radical species by optimization of the various experimental parameters. Polyolefin‐g‐poly(methyl methacrylate) and polyolefin‐g‐poly(methyl acrylate) graft copolymers with controlled architecture and various graft lengths were, thus, successfully prepared under dilute ATRP conditions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Commercially available chlorinated polypropylene has been used as a macroinitiator for the Cu(0)‐mediated atom transfer radical polymerization of methyl methacrylate and tert‐butyl acrylate to obtain well‐defined graft copolymers. The relatively narrow molecular weight distribution in the graft copolymers and linear kinetic plots indicated the controlled nature of the copolymerization reactions. Both Fourier transform infrared and 1H NMR studies confirmed that the graft reactions had taken place successfully. After graft copolymer formation, tert‐butyl groups of poly(tert‐butyl acrylate) side chains were completely converted into poly(acrylic acid) chains to afford corresponding amphiphilic graft copolymers. © 2016 Society of Chemical Industry  相似文献   

3.
Poly(n‐butyl methacrylate) (PBMA)‐b‐polystyrene (PSt) diblock copolymers were synthesized by emulsion atom transfer radical polymerization (ATRP). PBMA macroinitiators that contained alkyl bromide end groups were obtained by the emulsion ATRP of n‐butyl methacrylate with BrCH3CHCOOC2H5 as the initiator; these were used to initiate the ATRP of styrene (St). The latter procedure was carried out at 85°C with CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine as the catalyst and polyoxyethylene(23) lauryl ether as the surfactant. With this technique, PBMA‐b‐PSt diblock copolymers were synthesized. The polymerization was nearly controlled; the ATRP of St from the macroinitiators showed linear increases in number‐average molecular weight with conversion. The block copolymers were characterized with IR spectroscopy, 1H‐NMR, and differential scanning calorimetry. The effects of the molecular weight of the macroinitiators, macroinitiator concentration, catalyst concentration, surfactant concentration, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP are also reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2123–2129, 2005  相似文献   

4.
Styrene (Sty), methyl methacrylate (MMA), methacrylamide (MAm) and acrylomorpholine (AcM) were grafted onto powder cellulose by atom‐transfer radical polymerization. Cellulose chloroacetate (Cell‐ClAc), as a macro‐initiator, was first prepared by the reaction of chloroacetyl chloride with primary alcoholic OH groups on powder cellulose. CuBr and 1,2‐dipiperidinoethane were used as a transition‐metal compound and as a ligand, respectively. These reactions were monitored by FT‐IR and weight increase in Cell‐ClAc. In case of styrene, although some weight increase occurred, no evidence of grafting could be observed in the FT‐IR spectrum, while there were strong evidence of grafting with MMA, MAm and AcM. Cell‐graft‐MAm, Cell‐graft‐AcM and Cell‐graft‐MMA showed new carbonyl bands at 1665, 1640 and 1735 cm?1, respectively. Dye‐uptake and dye‐absorption properties of cellulose, for alizarin yellow (basic dye) and bromocresol green (acidic dye), and its moisture‐ and water‐uptake capacities improved with the grafting, but some decrease was observed in thermal stability. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
FeCl3 coordinated by iminodiacetic acid (IMA) was Changed used for the first time as the catalyst in azobisisobutyronitrile‐initiated reverse atom‐transfer radical polymerization (ATRP) of acrylonitrile (AN). An FeCl3 to IMA ratio of 1:2 not only gave the best control of molecular weight and its distribution but also provided a rather rapid reaction rate. The effects of solvents on the polymerization of AN were also investigated. The rate of the polymerization in N,N‐dimethylformamide (DMF) was faster than in propylene carbonate or toluene. The molecular weight of polyacrylonitrile agreed reasonably well with the theoretical molecular weight in DMF. The rate of polymerization increased with increasing polymerization temperature and the apparent activation energy was calculated to be 54.8 kJ mol−1. The reverse ATRP of AN did not show obvious living characteristics with CuCl2 instead of FeCl3. Copyright © 2005 Society of Chemical Industry  相似文献   

6.
A well‐defined photoresponsive polymethacrylate containing azo chromophores, poly[6‐(4‐phenylazophenoxy)hexylmethacrylate] [Poly(PPHM)], was prepared with azo‐based monofunctional and difunctional initiators via atom transfer radical polymerization in the presence of CuCl/1,1,4,7,10,10‐hexamethyltriethylenetetramine. The polymerizations with first‐order kinetics were well controlled with theoretical expected molecular weight and narrow molecular weight distributions in two initiation systems. The UV absorption intensities of the poly (PPHM)s increased with increasing molecular weight of the poly(PPHM)s in all cases. The 80‐nm surface‐relief gratings with 2.7% efficient diffraction formed on the poly (PPHM) film surface were obtained with a linearly polarized krypton laser with 10 min of irradiation at a recording beam intensity of 188 mW/cm2 with a wavelength of 413.1 nm. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

7.
A single‐pot atom transfer radical polymerization was used for the first time to successfully synthesize polyacrylonitrile with a molecular weight higher than 80,000 and a narrow polydispersity as low as 1.18. This was achieved with CuBr/isophthalic acid as the catalyst, 2‐bromopropionitrile as the initiator, and N,N‐dimethylformamide as the solvent. The effects of the solvent on the polymerization of acrylonitrile were also investigated. The induction period was shorter in N,N‐dimethylformamide than in propylene carbonate and toluene, and the rate of the polymerization in N,N‐dimethylformamide was fastest. The molecular weight of polyacrylonitrile agreed reasonably well with the theoretical molecular weight in N,N‐dimethylformamide. When chlorine was used in either the initiator or the catalyst, the rate of polymerization showed a trend of decreasing, and the molecular weight deviated from the theoretical predication significantly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3372–3376, 2006  相似文献   

8.
Surface‐initiated atom transfer radical polymerization (ATRP) was used to tailor the functionality of polysulfone (PSF) membranes. A simple one‐step method for the chloromethylation of PSF under mild conditions was used to introduce surface benzyl chloride groups as active ATRP initiators. Covalently tethered hydrophilic polymer brushes of poly(ethylene glycol)monomethacrylate and 2‐hydroxyethyl methacrylate and their block copolymer brushes were prepared via surface‐initiated ATRP from the chloromethylated PSF surfaces. A kinetic study revealed that the chain growth from the membranes was consistent with a controlled process. X‐ray photoelectron spectroscopy was used to characterize the surface‐modified membrane after each modification stage. Protein adsorption experiments revealed substantial antifouling properties of the grafted PSF membranes in comparison with the those of the pristine PSF surface. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
采用原子转移自由基聚合法(ATRP)合成了三元乙丙橡胶与苯乙烯的接枝共聚物(EPDM-g-St),动力学研究表明聚合过程为“活性”聚合。在接枝聚合过程中发现了明显的苯乙烯热聚合现象。对接枝聚合中得到的均聚苯乙烯进行表征的结果表明,苯乙烯在ATRP接枝体系中的热聚合过程在一定程度上受到ATRP机理的控制;升高温度和延长反应时间使得热聚合更为显著。  相似文献   

10.
原子转移自由基聚合(ATRP)是目前研究的热点之一。该文介绍了ATRP的反应机理及其应用。  相似文献   

11.
Two monodisperse graft copolymers, poly(4‐methylstyrene)‐graft‐poly(tert‐butyl acrylate) [number‐average molecular weight (Mn) = 37,500, weight‐average molecular weight/number‐average molecular weight (Mw/Mn) = 1.12] and polystyrene‐graft‐poly(tert‐butyl acrylate) (Mn = 72,800, Mw/Mn = 1.12), were prepared by the atom transfer radical polymerization of tert‐butyl acrylate catalyzed with Cu(I) halides. As macroinitiators, poly{(4‐methylstyrene)‐co‐[(4‐bromomethyl)styrene]} and poly{styrene‐co‐[4‐(1‐(2‐bromopropionyloxy)ethyl)styrene]}, carrying 40% of the bromoalkyl functionalities along the chain, were used. The dependencies of molecular parameters on monomer conversion fulfilled the criteria for controlled polymerizations. In contrast, the dependencies of monomer conversion versus time were nonideal; possible causes were examined. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2930–2936, 2002  相似文献   

12.
The covalent bonding of tertiary amine 2‐(dimethylamino)ethyl methacrylate to ramie fiber via atom transfer radical polymerization was obtained with a brominated initiator and the catalyst CuCl/1,10‐phenanthroline. The results reveal that poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) was successfully immobilized on the surface of the ramie fiber in a controlled polymerization. After the grafting with PDMAEMA, the crystal structure of cellulose I in the ramie fiber was still preserved, and the lateral size of the microfibrils, calculated on the basis of plane 002, was slightly increased. As a demonstration of possible applications, the modified fiber was dyed with CI Reactive Red 2. The dye uptake, which almost linearly increased with increasing molecular weight of PDMAEMA attached on the ramie fiber, was raised to be over 15 times that of the raw fiber. The reason was that the reactivity between the tertiary amines in PDMAEMA and the dichlorotriazinyl group in the dye molecules was much higher than that between the hydroxyl groups in the ramie fiber and the reactive groups in the dye molecules. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Well‐defined poly(vinyl acetate‐b‐methyl methacrylate) block copolymers were successfully synthesized by the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in p‐xylene with CuBr as a catalyst, 2,2′‐bipyridine as a ligand, and trichloromethyl‐end‐grouped poly(vinyl acetate) (PVAc–CCl3) as a macroinitiator that was prepared via the telomerization of vinyl acetate with chloroform as a telogen. The block copolymers were characterized with gel permeation chromatography, Fourier transform infrared, and 1H‐NMR. The effects of the solvent and temperature on ATRP of MMA were studied. The control over a large range of molecular weights was investigated with a high [MMA]/[PVAc–CCl3] ratio for potential industry applications. In addition, the mechanism of the polymerization was discussed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1089–1094, 2006  相似文献   

14.
Polyaniline‐graft‐Poly(N‐isopropylacrylamide) copolymers were synthesized by atom‐transfer radical polymerization (ATRP) of N‐isopropylacrylamide using polyaniline macro‐initiators. Polyaniline‐chloroacetylchloride and polyaniline‐chloropropionylchloride macroinitiators were obtained by the reaction of amine nitrogens of polyaniline with chloroacetyl chloride and 2‐choloropropionyl choloride, respectively. Both macroinitiators and graft copolymers were characterized by FT‐IR and 1H‐NMR spectroscopy. The cyclic voltammetry (CV) and UV‐Vis spectroscopy studies showed that these copolymers are electroactive. The solubility test revealed that the polyaniline‐graft‐poly (N‐isopropylacrylamide) copolymers are water soluble or water/methanol soluble. The Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) images showed the growing of poly (N‐isopropylacrylamide) chains on polyaniline backbone. Investigation of thermal behavior of graft copolymers by thermal gravimetry analysis (TGA) confirmed the results obtained from AFM and SEM images. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
The paper describes the synthesis of block copolymers of methyl methacrylate (MMA) and N‐aryl itaconimides using atom‐transfer radical polymerization (ATRP) via a poly(methyl methacrylate)–Cl/CuBr/bipyridine initiating system or a reverse ATRP AIBN/FeCl3·6H2O/PPh3 initiating system. Poly(methyl methacrylate) (PMMA) macroinitiator, ie with a chlorine chain‐end (PMMA‐Cl), having a predetermined molecular weight (Mn = 1.27 × 104 g mol?1) and narrow polydispersity index (PDI = 1.29) was prepared using AIBN/FeCl3·6H2O/PPh3, which was then used to polymerize N‐aryl itaconimides. Increase in molecular weight with little effect on polydispersity was observed on polymerization of N‐aryl itaconimides using the PMMA‐Cl/CuBr/Bpy initiating system. Only oligomeric blocks of N‐aryl itaconimides could be incorporated in the PMMA backbone. High molecular weight copolymer with a narrow PDI (1.43) could be prepared using tosyl chloride (TsCl) as an initiator and CuBr/bipyridine as catalyst when a mixture of MMA and N‐(p‐chlorophenyl) itaconimide in the molar ratio of 0.83:0.17 was used. Thermal characterization was performed using differential scanning calorimetry (DSC) and dynamic thermogravimetry. DSC traces of the block copolymers showed two shifts in base‐line in some of the block copolymers; the first transition corresponds to the glass transition temperature of PMMA and second transition corresponds to the glass transition temperature of poly(N‐aryl itaconimides). A copolymer obtained by taking a mixture of monomers ie MMA:N‐(p‐chlorophenyl) itaconimide in the molar ratio of 0.83:0.17 showed a single glass transition temperature. Copyright © 2005 Society of Chemical Industry  相似文献   

16.
Macromonomer initiators behave as macro cross‐linkers, macro initiators, and macromonomers to obtain branched and cross‐linked block/graft copolymers. A series of new macromonomer initiators for atom transfer radical polymerization (MIM‐ATRP) based on polyethylene glycol (Mn = 495D, 2203D, and 4203D) (PEG) were synthesized by the reaction of the hydroxyl end of mono‐methacryloyl polyethylene glycol with 2‐bromo propanoyl chloride, leading to methacryloyl polyethylene glycol 2‐bromo propanoyl ester. Poly (ethylene glycol) functionalized with methacrylate at one end was reacted with 2‐bromopropionyl chloride to form a macromonomeric initiator for ATRP. ATRP was found to be a more controllable polymerization method than conventional free radical polymerization in view of fewer cross‐linked polymers and highly branched polymers produced from macromonomer initiators as well. In another scenario, ATRP of N‐isopropylacrylamide (NIPAM) was initiated by MIM‐ATRP to obtain PEG‐b‐PNIPAM branched block/graft copolymers. Thermal analysis, FTIR, 1H NMR, TEM, and SEM techniques were used in the characterization of the products. They had a thermo‐responsive character and exhibited volume phase transition at ~ 36°C. A plasticizer effect of PEG in graft copolymers was also observed, indicating a lower glass transition temperature than that of pure PNIPAM. Homo and copolymerization kinetics were also evaluated. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Surface modification of various solid polysaccharide substrates was conducted by grafting methyl acrylate (MA) and styrene via atom transfer radical polymerization (ATRP) to produce well‐defined polymer grafts. The hydroxyl groups on the surfaces of the substrates were reacted with 2‐bromoisobutyryl bromide followed by graft copolymerization under ATRP conditions. The studied substrates were filter paper, microcrystalline cellulose, Lyocell fibers, dialysis tubing, and chitosan films. The modified substrates were analyzed by FT‐IR, water contact angle measurements, TGA, and SEM. FT‐IR characterization of the grafted substrates showed significant differences between the different substrates in the amount of grafted polymer. Higher amounts of polymer seem to be possible to graft from native cellulose substrates than from regenerated cellulose substrates. To investigate whether the grafted polymers were “living” after a longer time period, a second layer of polystyrene was grafted from a filter paper modified with PMA one year ago. FT‐IR characterization of the filter paper showed a peak corresponding to styrene, indicating that a block copolymer had been formed on the surface. Graft copolymerization can be used to change and tailor the surface properties of the polysaccharide substrates. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4155–4162, 2006  相似文献   

18.
Graft copolymerization of vinyl monomers onto chitosan and other natural polymers using atom transfer radical polymerization has only recently attracted interest. This technique could potentially provide new ways to utilize this abundant natural polymer. It would enable a wide variety of molecular designs to afford novel types of tailored hybrid materials composed of natural polysaccharides and synthetic polymers. In this work, a chitosan macroinitiator was prepared by the reaction of chitosan with 2‐bromo‐isobutyryl bromide, after the chitosan amino group had been protected as the imine. The aqueous grafting of methoxy capped (PEG 350) methacrylate onto chitosan is described. The kinetic study revealed a first order polymerization reaction. Polydispersities of about 1.25 were obtained. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 901–912, 2003  相似文献   

19.
FeCl3 coordinated by triphenylphosphine was first used as the catalyst in the 1,1,2,2‐tetraphenyl‐1,2‐ethanediol‐initiated reverse atom transfer radical polymerization of acrylonitrile. A FeCl3/triphenylphosphine ratio of 0.5 not only gave the best control of the molecular weight and its distribution but also provided a rather rapid reaction rate. The rate of polymerization increased with increasing polymerization temperature, and the apparent activation energy was calculated to be 62.4 kJ/mol. When FeCl3 was replaced with CuCl2, the reverse atom transfer radical polymerization of acrylonitrile did not show prominent living characteristics. To demonstrate the active nature of the polymer chain end, the polymers were used as macroinitiators to advance the chain‐extension polymerization in the presence of a CuCl/2,2′‐bipyridine catalyst system via a conventional atom transfer radical polymerization process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4041–4045, 2007  相似文献   

20.
The synthesis of novel copolymers consisting of a side‐group liquid‐crystalline backbone and poly (methyl methacrylate) grafts were realized by the use of atom transfer radical polymerization (ATRP). In the first stage, the bromine‐functional copolymers 6‐(4‐cyanobiphenyl‐4′‐oxy)hexyl acrylate and (2,5‐dioxo‐2,5‐dihydro‐1H‐pyrrole‐1‐yl)methyl 2‐bromopropanoate were synthesized by free‐radical polymerization. These copolymers were used as initiators in the ATRP of methyl methacrylate to yield graft copolymers. Both the macroinitiator and graft copolymers were characterized by 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. The ATRP graft copolymerization was supported by an increase in the molecular weight of the graft copolymers compared to that of the macroinitiator and also by their monomodal molecular weight distribution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号