首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper a procedure to solve the identification inverse problems for two‐dimensional potential fields is presented. The procedure relies on a boundary integral equation (BIE) for the variations of the potential, flux, and geometry. This equation is a linearization of the regular BIE for small changes in the geometry. The aim in the identification inverse problems is to find an unknown part of the boundary of the domain, usually an internal flaw, using experimental measurements as additional information. In this paper this problem is solved without resorting to a minimization of a functional, but by an iterative algorithm which alternately solves the regular BIE and the variation BIE. The variation of the geometry of the flaw is modelled by a virtual strainfield, which allows for greater flexibility in the shape of the assumed flaw. Several numerical examples demonstrate the effectiveness and reliability of the proposed approach. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
A simple demonstration of the existence of the Cauchy principal value (CPV) of the strongly singular surface integral in the Somigliana Identity at a non-smooth boundary point is presented. First a regularization of the strongly singular integral by analytical integration of the singular term in the radial direction in pre-image planes of smooth surface patches is carried out. Then it is shown that the sum of the angular integrals of the characteristic of the tractions of the Kelvin fundamental solution is zero, a formula for the transformation of angles between the tangent plane of a suface patch and the pre-image plane at smooth mapping of the surface patch being derived for this purpose.  相似文献   

3.
A dual integral formulation for the interior problem of the Laplace equation with a smooth boundary is extended to the exterior problem. Two regularized versions are proposed and compared with the interior problem. It is found that an additional free term is present in the second regularized version of the exterior problem. An analytical solution for a benchmark example in ISBE is derived by two methods, conformal mapping and the Poisson integral formula using symbolic software. The potential gradient on the boundary is calculated by using the hypersingular integral equation except on the two singular points where the potential is discontinuous instead of failure in ISBE benchmarks. Based on the matrix relations between the interior and exterior problems, the BEPO2D program for the interior problem can be easily reintegrated. This benchmark example was used to check the validity of the dual integral formulation, and the numerical results match the exact solution well.  相似文献   

4.
The importance of a two‐parameter approach in the fracture mechanics analysis of many cracked components is increasingly being recognized in engineering industry. In addition to the stress intensity factor, the T stress is the second parameter considered in fracture assessments. In this paper, the path‐independent mutual Mintegral method to evaluate the T stress is extended to treat plane, generally anisotropic cracked bodies. It is implemented into the boundary element method for two‐dimensional elasticity. Examples are presented to demonstrate the veracity of the formulations developed and its applicability. The numerical solutions obtained show that material anisotropy can have a significant effect on the T stress for a given cracked geometry.  相似文献   

5.
The solutions of the displacement boundary integral equation (BIE) are not uniquely determined in certain types of boundary conditions. Traction boundary integral equations that have unique solutions in these traction and mixed boundary cases are established. For two‐dimensional linear elasticity problems, the divergence‐free property of the traction boundary integral equation is established. By applying Stokes' theorem, unknown tractions or displacements can be reduced to computation of traction integral potential functions at the boundary points. The same is true of the J integral: it is divergence‐free and the evaluation of the J integral can be inverted into the computation of the J integral potential functions at the boundary points of the cracked body. The J integral can be expressed as the linear combination of the tractions and displacements from the traction BIE on the boundary of the cracked body. Numerical integrals are not needed at all. Selected examples are presented to demonstrate the validity of the traction boundary integral and J integral. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
A finite element constructed on the basis of boundary integral equations is proposed. This element has a flexible shape and arbitrary number of nodes. It also has good approximation properties. A procedure of constructing an element stiffness matrix is demonstrated first for one-dimensional case and then for two-dimensional steady-state heat conduction problem. Numerical examples demonstrate applicability and advantages of the method. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
We present a new solution to accelerate the boundary integral equation method (BIEM). The calculation time of the BIEM is dominated by the evaluation of the layer potential in the boundary integral equation. We performed this task using MDGRAPE‐2, a special‐purpose computer designed for molecular dynamics simulations. MDGRAPE‐2 calculates pairwise interactions among particles (e.g. atoms and ions) using hardwired‐pipeline processors. We combined this hardware with an iterative solver. During the iteration process, MDGRAPE‐2 evaluates the layer potential. The rest of the calculation is performed on a conventional PC connected to MDGRAPE‐2. We applied this solution to the Laplace and Helmholtz equations in three dimensions. Numerical tests showed that BIEM is accelerated by a factor of 10–100. Our rather naive solution has a calculation cost of O(N2 × Niter), where N is the number of unknowns and Niter is the number of iterations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
This paper considers a 2‐D fracture analysis of anisotropic piezoelectric solids by a boundary element‐free method. A traction boundary integral equation (BIE) that only involves the singular terms of order 1/r is first derived using integration by parts. New variables, namely, the tangential derivative of the extended displacement (the extended displacement density) for the general boundary and the tangential derivative of the extended crack opening displacement (the extended displacement dislocation density), are introduced to the equation so that solution to curved crack problems is possible. This resulted equation can be directly applied to general boundary and crack surface, and no separate treatments are necessary for the upper and lower surfaces of the crack. The extended displacement dislocation densities on the crack surface are expressed as the product of the characteristic terms and unknown weight functions, and the unknown weight functions are modelled using the moving least‐squares (MLS) approximation. The numerical scheme of the boundary element‐free method is established, and an effective numerical procedure is adopted to evaluate the singular integrals. The extended ‘stress intensity factors’ (SIFs) are computed for some selected example problems that contain straight or curved cracks, and good numerical results are obtained. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
The purpose of this communication is to present a novel approach to compute the so called Topological Sensitivity (TS) of any variable or functional in elasticity using Boundary Integral Equations (BIEs), and its use as a tool for identification of defects, by itself or in conjunction with zero-order methods, like Genetic Algorithms. The TS of a cost functional provides a measure of the susceptibility of a defect being at a given location. The main contributions are summarized in the following points:  相似文献   

10.
The solution of a Dirichlet boundary value problem of plane isotropic elasticity by the boundary integral equation (BIE) of the first kind obtained from the Somigliana identity is considered. The logarithmic function appearing in the integral kernel leads to the possibility of this operator being non-invertible, the solution of the BIE either being non-unique or not existing. Such a situation occurs if the size of the boundary coincides with the so-called critical (or degenerate) scale for a certain form of the fundamental solution used. Techniques for the evaluation of these critical scales and for the removal of the non-uniqueness appearing in the problems with critical scales solved by the BIE of the first kind are proposed and analysed, and some recommendations for BEM code programmers based on the analysis presented are given.  相似文献   

11.
Abstract

This study investigates the feasibility of enhancing steam‐driven ejector performance. Initially, a one‐dimensional ejector theory is used to examine the effects on ejector performance of three isentropic efficiencies: nozzle efficiency ηm , mixing efficiency ηm, and diffuser efficiency ηm . Theoretical analysis demonstrates that mixing efficiency profoundly affects ejector performance, but that the other two efficiencies have slightly influenced ejector performance. This finding suggests that efficient mixing can promote ejector performance. This study also attempts to improve mixing efficiency using a petal nozzle. The behavior and characteristics of a petal nozzle are investigated by testing the nozzle under various operating conditions, i.e. primary pressure, secondary pressure, and back pressure. In addition, the study compares the experimental and theoretical results. These results prove that using a petal nozzle can improve ejector performance. The shadowgraph method was used to visualize the inner flow field of an ejector. The flow patterns observed should help to further improve ejector performance.  相似文献   

12.
The purpose of this work is to demonstrate the application of the self‐regular formulation strategy using Green's identity (potential‐BIE) and its gradient form (flux‐BIE) for Laplace's equation. Self‐regular formulations lead to highly effective BEM algorithms that utilize standard conforming boundary elements and low‐order Gaussian integrations. Both formulations are discussed and implemented for two‐dimensional potential problems, and numerical results are presented. Potential results show that the use of quartic interpolations is required for the flux‐BIE to show comparable accuracy to the potential‐BIE using quadratic interpolations. On the other hand, flux error results in the potential‐BIE implementation can be dominated by the numerical integration of the logarithmic kernel of the remaining weakly singular integral. Accuracy of these flux results does not improve beyond a certain level when using standard quadrature together with a special transformation, but when an alternative logarithmic quadrature scheme is used these errors are shown to reduce abruptly, and the flux results converge monotonically to the exact answer. In the flux‐BIE implementation, where all integrals are regularized, flux results accuracy improves systematically, even with some oscillations, when refining the mesh or increasing the order of the interpolating function. The flux‐BIE approach presents a great numerical sensitivity to the mesh generation scheme and refinement. Accurate results for the potential and the flux were obtained for coarse‐graded meshes in which the rate of change of the tangential derivative of the potential was better approximated. This numerical sensitivity and the need for graded meshes were not found in the elasticity problem for which self‐regular formulations have also been developed using a similar approach. Logarithmic quadrature to evaluate the weakly singular integral is implemented in the self‐regular potential‐BIE, showing that the magnitude of the error is dependent only on the standard Gauss integration of the regularized integral, but not on this logarithmic quadrature of the weakly singular integral. The self‐regular potential‐BIE is compared with the standard (CPV) formulation, showing the equivalence between these formulations. The self‐regular BIE formulations and computational algorithms are established as robust alternatives to singular BIE formulations for potential problems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we consider solving potential equations by the boundary integral equation approach. The equations so derived are Fredholm integral equations of the first kind and are known to be ill-conditioned. Their discretized matrices are dense and have condition numbers growing like O(n) where n is the matrix size. We propose to solve the equations by the preconditioned conjugate gradient method with circulant integral operators as preconditioners. These are convolution operators with periodic kernels and hence can be inverted efficiently by using fast Fourier transforms. We prove that the preconditioned systems are well conditioned, and hence the convergence rate of the method is linear. Numerical results for two types of regions are given to illustrate the fast convergence. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
The identification inverse problem is solved here for flaw detection in anisotropic materials by means of an innovative approach: the combination of Genetic Algorithm and the Topological Sensitivity in anisotropic elasticity. The Topological Sensitivity provides a measure of the susceptibility of a defect being at a given location. This is based on a linearized topological expansion, applying Boundary Integral Equations and using solely information of the non-damaged state. It is proved that the Topological Sensitivity provides an accurate tool for estimating the location and size of defects. First, it is shown that the minimum of the residual (cost function) topological sensitivity pinpoints the location and size of the actual flaws, and secondly, the minimization of the residual topological sensitivity is carried out using Genetic Algorithm. When the Genetic Algorithm is applied to the residual Topological Sensitivity instead of to the full residual, the applicability of this method is enhanced since the computational effort, which is the major drawback of this type of search methods, is drastically reduced. In this paper, the formulation for linearly anisotropic elastic media is composed for the case of circular flaws, although the procedure is extensible to other kinds of defects like elliptical cavities, elastic or rigid inclusions or cracks.  相似文献   

15.
An introduction to the application of surface integral equation methods to the calculation of eddy current-flaw interactions is presented. Two two-dimensional problems are presented which are solved by the boundary integral equation method. Application of collocation methods reduces the problems to systems of linear algebraic equations. The first problem is that of a closed surface crack in a flat slab with an AC magnetic field parallel to the plane of the crack. The second is that of av-groove crack in the AC field of a pair of parallel wires placed parallel to the vertex of the crack. In both cases, maps of the current densities at the surface are displayed, as well as the impedance changes due to the cracks.  相似文献   

16.
17.
The paper presents a computational method for predicting the initial geometry of a finitely deforming anisotropic elastic body from a given deformed state. The method is imperative for a class of problem in stress analysis, particularly in biomechanical applications. While the basic idea has been established elsewhere Comput. Methods Appl. Mech. Eng. 1996; 136 :47–57; Int. J. Numer. Meth. Engng 1998; 43 : 821–838), the implementation in general anisotropic solids is not a trivial exercise, but comes after a systematic development of Eulerian representations of constitutive equations. In this paper, we discuss the general representation in the context of fibrous hyperelastic solids, and provide explicit stress functions for some commonly used soft tissue models including the Fung model and the Holzapfel model. A three‐field mixed formulation is introduced to enforce quasi‐incompressibility constraints. The practical utility of this method is demonstrated using an example of aneurysm stress analysis. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Complex boundary integral equations (Fredholm‐type regular or Cauchy‐type singular or even Hadamard–Mangler‐type hypersingular) have been used for the numerical solution of general plane isotropic elasticity problems. The related Muskhelishvili and, particularly, Lauricella–Sherman equations are famous in the literature, but several more extensions of the Lauricella–Sherman equations have also been proposed. In this paper it is just mentioned that the stress and displacement components can be very accurately computed near either external or internal simple closed boundaries (for anyone of the above equations: regular or singular or hypersingular, but with a prerequisite their actual numerical solution) through the appropriate use of the even more classical elementary Cauchy theorem in complex analysis. This approach has been already used for the accurate numerical computation of analytic functions and their derivatives by Ioakimidis, Papadakis and Perdios (BIT 1991; 31 : 276–285), without applications to elasticity problems, but here the much more complicated case of the elastic complex potentials is studied even when just an appropriate non‐analytic complex density function (such as an edge dislocation/loading distribution density) is numerically available on the boundary. The present results are also directly applicable to inclusion problems, anisotropic elasticity, antiplane elasticity and classical two‐dimensional fluid dynamics, but, unfortunately, not to crack problems in fracture mechanics. Brief numerical results (for the complex potentials), showing the dramatic increase of the computational accuracy, are also displayed and few generalizations proposed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
The paper examines the problem of a penny-shaped crack which is formed by the development of a crack in both the fibre and the matrix of a composite consisting of an isolated elastic fibre located in an elastic matrix of infinite extent. The composite region is subjected to a uniform strain field in the direction of the fibre. The paper presents two integral-equation based approaches for the analysis of the problem. The first approach considers the formulation of the complete integral equations governing the associated elasticity problem for a two material region. The second approach considers the boundary integral equation formulation of the problem. Both methods entail the numerical solution of the governing integral equations. The solutions to these integral equations are used to evaluate the stress intensity factor at the boundary of the penny-shaped crack.  相似文献   

20.
This paper investigates the evaluation of the sensitivity, with respect to tangential perturbations of the singular point, of boundary integrals having either weak or strong singularity. Both scalar potential and elastic problems are considered. A proper definition of the derivative of a strongly singular integral with respect to singular point perturbations should accommodate the concomitant perturbation of the vanishing exclusion neighbourhood involved in the limiting process used in the definition of the integral itself. This is done here by esorting to a shape sensitivity approach, considering a particular class of infinitesimal domain perturbations that ‘move’ individual points, and especially the singular point, but leave the initial domain globally unchanged. This somewhat indirect strategy provides a proper mathematical setting for the analysis. Moreover, the resulting sensitivity expressions apply to arbitrary potential-type integrals with densities only subjected to some regularity requirements at the singular point, and thus are applicable to approximate as well as exact BEM solutions. Quite remarkable is the fact that the analysis is applicable when the singular point is located on an edge and simply continuous elements are used. The hypersingular BIE residual function is found to be equal to the derivative of the strongly singular BIE residual when the same values of the boundary variables are substituted in both SBIE and HBIE formulations, with interesting consequences for some error indicator computation strategies. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号