首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three different types of characteristic structures‐microcells, nanoclay, and crystallite lamella‐exist in injection molded polyamide‐6 microcellular nanocomposites. These structures are in completely different scales. The spatial orientation of these microscale structures crucially determines the material's bulk properties. Based on scanning electron microscopy, transmission electron microscopy, and two‐dimensional X‐ray diffractometry measurements, it was found that the nanoclay and the crystallite formed special geometric structures around the microcells and near the part skins. The nanoclay platelets lay almost parallel to the surfaces of the molded parts. Preferred orientation of the crystallites was induced by the presence of the nanoclay. A molecular‐based model is proposed to describe the structural hierarchy and correlations among the microcells, nanoclay, and crystallite lamella. From the small‐angle X‐ray scattering experiments, it was found that microcellular injection molding produces relatively smaller crystallite lamella than that of conventional injection molding, and that for both solid and microcellular neat resin parts the crystallite lamella thickness at the part skin is smaller than that at the core. Polarized optical microscopy results also indicated that the size of crystallites in the microcellular neat resin and nanocomposite parts is smaller than that in the corresponding solid parts. POLYM. ENG. SCI., 47:765–779, 2007. © 2007 Society of Plastics Engineers  相似文献   

2.
The effects of adding nanoclay to polyamide‐6 (PA‐6) neat resin, and the effects of processing parameters on cell density and size in microcellular injection‐molded components were investigated. In addition, the crystal sizes, structures, and orientation were analyzed with the use of x‐ray diffraction (XRD) and a polarized optical microscope. The standard ASTM D 638‐02 tensile bars for the analyses were molded according to a fractional four‐factor, three‐level, L9 Taguchi design of experiment (DOE) with varying melt temperature, injection speed, supercritical fluid (SCF) concentration, and shot size. It was found that the presence of montmorillonite (MMT) nanoclay greatly reduced the size of the cells and crystals, but increased their density in comparison with neat resin processed under identical molding conditions. In addition, at the sprue section downstream of the machine nozzle, cell size gradually decreased from the part center toward the skin for both the neat resin and the nanocomposite. It was also found that shot size was the most important processing parameter for both the neat resin and nanocomposite in affecting cell density and size in microcellular injection molding components. Weakly preferred crystal orientations were observed on the surface of microcellular injection‐molded PA‐6/MMT tensile bars. Finally, the addition of nanoclay in PA‐6 neat resin facilitated the formation of γ‐phase crystals in the molded components. Polym. Eng. Sci. 45:52–61, 2005. © 2004 Society of Plastics Engineers.  相似文献   

3.
Abstract

In this study, the microstructure, thermal behaviour and mechanical properties of microcellular nanocomposites were studied. Microcell wall structure and smoothness were determined by the size of the crystalline structure, which, in turn, was based on the material system and moulding conditions. Nanoclay in the microcellular, supercrtitical fluid assisted injection moulding process promoted the γ form and suppressed the α form crystalline structure of polyamide 6 (PA6). In the crystallisation kinetics studies, the Avrami equation and the modified Ozawa equation with the Mo method were used to model and analyse isothermal and non-isothermal crystallisation processes respectively. The existence of nanoclay increased the magnitude of the activation energy for both isothermal and non-isothermal crystallisation processes. This suggests the fast crystallisation process and the small crystalline size for microcellular nanocomposite processing. Interestingly, the dissolved gas lowered the crystallinity of the cores of moulded microcellular parts, but the addition of nanoclay reduced the crystallinity of both the cores and the skins of parts. The collective effect of the dissolved gas and nanoclay acted to shorten the moulding cycle time greatly with a reduction in the overall crystallinity of microcellular nanocomposite parts.  相似文献   

4.
The effects of submicron core‐shell rubber (CSR) particles, nanoclay fillers, and molding parameters on the mechanical properties and cell structure of injection‐molded microcellular polyamide‐6 (PA6) composites were studied. The experimental results of PA6 nanocomposites with 5.0 and 7.5 wt% nanoclay loadings and of CSR‐modified PA6 composites with 0.5 and 3.1 wt% CSR loadings were compared to their neat resin counterparts. This study found that nanoclay was more efficient in promoting a smaller cell size, larger cell density, and higher tensile strength for microcellular injection molding parts. A higher nanoclay loading led to more brittle behavior for microcellular parts. It was found that a proper amount of CSR particles could be added to the microcellular injection‐molded PA6 to reduce the cell size, increase the cell density, and enhance the toughness of the molded part. However, CSR particles were less effective cell nucleation agents as compared to nanoclay for producing desirable cell structures, and a higher CSR loading was found to have diminishing effects on the process and on the properties of the parts. POLYM. ENG. SCI., 45:773–788, 2005. © 2005 Society of Plastics Engineers  相似文献   

5.
Microspheres consisting of carbonated hydroxyapatite (CHAp) nanoparticles and poly(L ‐lactide) (PLLA) have been fabricated for use in the construction of osetoconductive bone tissue engineering scaffolds by selective laser sintering (SLS). In SLS, PLLA polymer melts and crystallizes. It is therefore necessary to study the crystallization kinetics of PLLA/CHAp nanocomposites. The effects of 10 wt% CHAp nanoparticles on the isothermal and nonisothermal crystallization behavior of PLLA matrix were studied, using neat PLLA for comparisons. The Avrami equation was successfully applied for the analysis of isothermal crystallization kinetics. Using the Lauritzen‐Hoffman theory, the transition temperature from crystallization Regime II to Regime III was found to be around 120°C for both neat PLLA and PLLA/CHAp nanocomposite. The combined Avrami‐Ozawa equation was used to analyze the nonisothermal crystallization process, and it was found that the Ozawa exponent was equal to the Avrami exponent for neat PLLA and PLLA/CHAp nanocomposite, respectively. The effective activation energy as a function of the relative crystallinity and temperature for neat PLLA and PLLA/CHAp nanocomposite under the nonisothermal crystallization condition was obtained by using the Friedman differential isoconversion method. The Lauritzen‐Hoffman parameters were also determined from the nonisothermal crystallization data by using the Vyazovkin‐Sbirrazzuoli equation. CHAp nanoparticles in the composite acted as an efficient nucleating agent, enhancing the nucleation rate but at the same time reducing the spherulite growth rate. This investigation has provided significant insights into the crystallization behavior of PLLA/CHAp nanocomposites, and the results obtained are very useful for making good quality PLLA/CHAp scaffolds through SLS. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
The effects of nanoclay on the crystallization behavior, microcellular structure, and mechanical properties of thermoplastic polyurethane (TPU)/clay nanocomposite (TPUCN) foams were investigated using differential scanning calorimetry, rheometry, scanning electron microscope, transmission electron microscopy, and X‐ray diffraction. It was found that the nanoclay acted as an effective nucleating agent for both crystal nucleation and cell nucleation. As a result, it significantly enhanced the crystallization behavior of the hard segment (HS) domains in TPU while refining the foamed structure of the microcellular injection molded parts. In particular, the average cell diameter of TPUCN foams decreased from 45 µm for neat TPU to 27 µm for TPUCN5 (5 wt% clay) and 18 µm for TPUCN10 (10 wt% clay). Furthermore, the cell density increased from 0.7 × 107 cell/cm3 for neat TPU to 1.4 × 107 cell/cm3 and 3.1 × 107 cell/cm3 for TPUCN5 and TPUCN10, respectively. In addition, the tensile strength also increased by 56.3% and 89.2% with 5 and 10 wt% clay content, respectively. By controlling the cell nucleation behavior through uniformly dispersed nanoclay, this study demonstrates that it is feasible to produce TPUCN foams via microcellular injection molding with desirable microcellular structures and improved mechanical properties. POLYM. ENG. SCI., 56:319–327, 2016. © 2015 Society of Plastics Engineers  相似文献   

7.
The influence of nanoclay particles on the nonisothermal crystallization behavior of intercalated polyethylene (PE) prepared by melt‐compounding was investigated. It is observed that the crystallization peak temperature (Tp) of PE/clay nanocomposites is slightly but consistently higher than the neat PE at various cooling rates. The half‐time (t0.5) for crystallization decreased with increase in clay content, implying the nucleating role of nanoclay particles. The nonisothermal crystallization data are analyzed using the approach of Avrami (Polymer 1971, 12, 150), Ozawa (Polym Eng Sci 1997, 37, 443), and Mo and coworkers (J Res Natl Bur Stand 1956, 57, 217), and the validity of the different kinetic models to the nonisothermal crystallization process of PE/clay nanocomposites is discussed. The approach developed by Mo and coworkers successfully explains the nonisothermal crystallization behavior of PE and PE/clay nanocomposites. The activation energy for nonisothermal crystallization of neat PE and PE/clay nanocomposites is determined using the Kissinger (J Res Natl Bur Stand 1956, 57, 217) method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3809–3818, 2006  相似文献   

8.
Blends of poly(3‐hydroxy butyrate‐co‐3‐hydroxy valerate) (PHBV) and poly(ethylene oxide) (PEO) were prepared by casting from chloroform solutions. Crystallization kinetics and melting behavior of blends have been studied by differential scanning calorimetry and optical polarizing microscopy. Experimental results reveal that the constituents are miscible in the amorphous state. They form separated crystal structures in the solid state. Crystallization behavior of the blends was studied under isothermal and nonisothermal conditions. Owing to the large difference in melting temperatures, the constituents crystallize consecutively in blends; however, the process is affected by the respective second component. PHBV crystallizes from the amorphous mixture of the constituents, at temperatures where the PEO remains in the molten state. PEO, on the other hand, is surrounded during its crystallization process by crystalline PHBV regions. The degree of crystallinity in the blends stays constant for PHBV and decreases slightly for PEO, with ascending PHBV content. The rate of crystallization of PHBV decreases in blends as compared to the neat polymer. The opposite behavior is observed for PEO. Nonisothermal crystallization is discussed in terms of a quasi‐isothermal approach. Qualitatively, the results show the same tendencies as under isothermal conditions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2776–2783, 2006  相似文献   

9.
The nonisothermal crystallization of poly(ethylene‐co‐glycidyl methacrylate) (PEGMA) and PEGMA/clay were studied by differential scanning calorimeter, at various cooling rates. Avrami model modified by Jeziorny, Ozawa mode and Liu model could successfully describe the nonisothermal crystallization process. Augis–Bennett model, Kissinger model, Takhor model, and Ziabicki model were used to evaluate the activation energy of both samples. It was found that the activation energy of PEGMA/clay nanocomposite was higher than that of neat PEGMA. Experimental results also indicated that the addition of modified clay might retard the overall nonisothermal crystallization process of PEGMA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1335–1343, 2006  相似文献   

10.
This paper presents the effects of process conditions and nano‐clay fillers on the microstructure (namely, size, density, and distribution of microcells within samples) and the resulting mechanical properties of microcellular injection molded polyamide‐6 (PA‐6) nanocomposite and its neat‐resin counterpart. Based on the design of experiments (DOE) matrices, samples were molded at various supercritical fluid (SCF) levels, melt temperatures, shot sizes, melt plastication pressures (MPP), and injection speeds. These samples were then subjected to scanning electron microscope (SEM) analysis, tensile testing, and impact testing. For both materials, the microstructure and the mechanical properties of the molded samples were found to be dependent on the process conditions and presence of nano‐clay, which could serve as microcell nucleating agent. At higher weight reductions, the nanocomposite samples exhibit much smaller microcells and higher cell densities than those obtained in the neat‐resin samples. The SEM micrographs reveal noticeable differences in microcell surface roughness between the nanocomposite and the neat resin. A statistical design analysis was used to identify the optimal process conditions that would result in desirable cell size and density and, thus, better mechanical properties. For example, the highest tensile strengths have been observed at the highest levels of shot size, MPP, injection speed, and SCF level, and at the lowest level of melt temperature.  相似文献   

11.
Currently, use of poly(lactic acid) (PLA) for injection molded articles is limited for commercial applications because PLA has a slow crystallization rate when compared with many other thermoplastics as well as standard injection molding cycle times. The overall crystallization rate and final crystallinity of PLA were controlled by the addition of physical nucleating agents as well as optimization of injection molding processing conditions. Talc and ethylene bis‐stearamide (EBS) nucleating agents both showed dramatic increases in crystallization rate and final crystalline content as indicated by isothermal and nonisothermal crystallization measurements. Isothermal crystallization half‐times were found to decrease nearly 65‐fold by the addition of only 2% talc. Process changes also had a significant effect on the final crystallinity of molded neat PLA, which was shown to increase from 5 to 42%. The combination of nucleating agents and process optimization not only resulted in an increase in final injection molded crystallinity level, but also allowed for a decreased processing time. An increase of over 30°C in the heat distortion temperature and improved strength and modulus by upwards of 25% were achieved through these material and process changes. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The effects of the glass‐bead content and size on the nonisothermal crystallization behavior of polypropylene (PP)/glass‐bead blends were studied with differential scanning calorimetry. The degree of crystallinity decreased with the addition of glass bead, and the crystallization temperature of the blends was marginally higher than that of pure PP at various cooling rates. Furthermore, the half‐time for crystallization decreased with an increase in the glass‐bead content or particle size, implying the nucleating role of the glass beads. The nonisothermal crystallization data were analyzed with the methods of Avrami, Ozawa, and Mo. The validity of various kinetic models for the nonisothermal crystallization process of PP/glass‐bead blends was examined. The approach developed by Mo successfully described the nonisothermal crystallization behavior of PP and PP/glass‐bead blends. Finally, the activation energy for the nonisothermal crystallization of pure PP and PP/glass‐bead blends based on the Kissinger method was evaluated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2026–2033, 2006  相似文献   

13.
Microspheres consisting of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) polymer matrix and calcium phosphate (Ca‐P) nanoparticles were made using the solid‐in‐oil‐in‐water (S/O/W) emulsion solvent evaporation technique. Amorphous Ca‐P nanoparticles with the calcium to phosphate ratio of 1.5 were relatively well distributed in microspheres. The nonisothermal crystallization behavior of Ca‐P/PHBV nanocomposite with different Ca‐P contents (0–20%) was studied through differential scanning calorimetry using different cooling rates. During nonisothermal crystallization, the presence of Ca‐P nanoparticles resulted in an increase in crystallization rate and the nucleation activity of the nanocomposite also increased with increasing Ca‐P content. Various models were applied to investigate nonisothermal crystallization kinetics. All approaches, except for the Ozawa model, could successfully describe the nonisothermal crystallization behavior of PHBV and Ca‐P/PHBV nanocomposite. The effective activation energy for nonisothermal crystallization was calculated using the differential isoconversional method proposed by Friedman. The morphology of PHBV spherulites in nanocomposite was also studied using polarized optical microscopy. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

14.
To accelerate the crystallization of poly(L ‐lactic acid) (PLLA) and enhance its crystallization ability, a multiamide nucleator (TMC) was introduced into the PLLA matrix. The thermal characteristics, isothermal and nonisothermal crystallization behavior of pure PLLA and TMC‐nucleated PLLA were investigated by differential scanning calorimetry. The determination of thermal characteristics shows that the addition of TMC can significantly decrease the onset temperature of cold crystallization and meanwhile elevate the total crystallinity of PLLA. For the isothermal crystallization process, it is found that the overall crystallization rate is much faster in TMC‐nucleated PLLA than in pure PLLA and increases as the TMC content is increased, however, the crystal growth form and crystalline structure are not influenced much despite the presence of TMC. In the case of nonisothermal crystallization, the nucleation efficiency and nucleation activity were estimated and the results indicate that excellent nucleation‐promoting effect could be achieved when the weight percentage of TMC is chosen between 0.25% and 0.5%. Polarized optical microscopy observation reveals that the nuclei number of PLLA increases and the spherulite size reduces greatly with the addition of TMC. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

15.
Poly(phenylene sulfide) (PPS) is a semicrystalline engineering resin with exceptional solvent resistance and thermal performance. Properties such as these are directly related to the high crystallinity of PPS. In order to exploit its crystalline nature, PPS should be molded at a high tool temperature (hot oil tool) to allow for the highest crystallization rate, and therefore the highest percent crystallinity. Alternately, if a low mold temperature is used, the molded parts should be annealed. This latter process has been studied for injection molded neat PPS resin for various annealing temperatures. Two different grades of PPS were studied that represent cured and linear types. Samples were studied as-molded, and annealed at 160, 180, 200 and 220°C. Increases in glass transition temperature were noted upon annealing. An increase in storage modulus was also noted for annealed samples. This increase persisted up to approximately the annealing temperature. Differential scanning calorimetry has been used to show that annealing PPS allows for a secondary crystallization to occur whereby an endotherm appears that corresponds to the secondary crystalline phase melting near the annealing temperature. As the annealing temperature is increased, the area of the endotherm increases. The secondary crystallization explains the higher storage modulus that persists up to the annealing temperature. These results are discussed in terms of crystallinity and overall effect on heat distortion temperature.  相似文献   

16.
The dimensional variation of an injection‐molded, semicrystalline polymer part is larger than the variation of an amorphous polymer part because the shrinkage of a crystalline polymer is generally greater than the shrinkage of an amorphous one. We investigated the warpage of film‐insert‐molded (FIM) specimens to determine the effect of the crystallization behavior on the deformation of FIM parts. More perfect crystalline structures and higher crystallinity developed in the core region of the FIM specimens versus other regions. Relatively imperfect crystalline structures and low crystallinity developed in the adjacent regions of the inserted films, whereas a thin, amorphous skin layer developed in the adjacent regions of the metallic mold wall. The crystallizable substrate in the FIM specimens caused very large warpage because nonuniform shrinkage occurred in the thickness direction of the specimens. Therefore, the warpage of an experimentally prepared FIM poly(butylene terephthalate) specimen was greater than that predicted numerically because of its complex crystallization behavior. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
The crystallization behavior of polymer blends of poly(tetramethylene succinate) (PTMS) with poly(?‐caprolactone) (PCL) or poly(ethylene terephthalate) (PET) was investigated with differential scanning calorimetry under isothermal and nonisothermal conditions. The blends were prepared by solution casting and precipitation, respectively. The constituent polymers were semicrystalline materials and crystallized nearly independently in the blends. The addition of the second component to PTMS showed that PCL did not significantly influence the crystallinity of the constituents in the blends under isothermal conditions, whereas the crystallization of PTMS was slightly suppressed by crystalline PET. Nonisothermal crystallization under constant cooling rates was examined in terms of a quasi‐isothermal Avrami approach. In blends, the rates of crystallization were differently influenced by the second component. The rate of the constituent that crystallized at the higher temperature was barely influenced by the second component being in the molten state, whereas the rate of the second component, crystallizing when the first component was already crystalline, was altered differently under isothermal and nonisothermal conditions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 149–160, 2004  相似文献   

18.
The main goal of this study is to explicate the exact role of nanoclay particles on thermal degradation mechanism and crystallization behavior of blend‐based nanocomposites. Thermoplastic olefin (TPO) nanocomposites, as a simple model, were prepared via melt mixing in an internal batch mixer. X‐ray diffractometry (XRD) and transmission electron microscopy tests show that a relatively good dispersion of silicate layers was obtained in the system. On the addition of nanoclay, a remarkable reduction in rubber domain size was observed through scanning electron microscopy (SEM). Thermogravimetric analysis shows that nanoclay particles can retard thermal decomposition process. Thermal degradation kinetic studies, using Flynn–Wall–Ozawa method, reveal that addition of nanoclay contents higher than 1 wt % changes the mechanism of thermal degradation. A mechanism was proposed to explain this phenomenon based on SEM images of char residues. Non‐isothermal crystallization behavior of samples was investigated using differential scanning calorimeter. The unexpected reduction in crystallinity of TPO nanocomposites containing 5 wt % nanoclay was explained using rheometry analysis and attributed to the formation of stable percolated clay networks in this sample. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
The nonisothermal melt‐crystallization behavior of PA6 and EBA blends at varying EBA content was investigated using differential scanning calorimetry at different scanning rates. Several macrokinetic models such as Avrami, Jeziorny, Ozawa, Liu, Ziabicki, and Tobin were applied to analyze the crystallization behavior thoroughly under nonisothermal conditions. The Avrami and Tobin model predicted that, for pure PA6 and PA6/EBA blends, simultaneous growth of all forms of crystal structures such as fibrillar, disc‐like, and spherulitic proceeds at an increasing nucleation rate. However, when applied to blends for isothermal crystallization, the Avrami model predicted that the crystallization process is diffusion‐controlled for pure PA6 and PA6/EBA blend containing higher content of EBA (50 phr), where the nylon‐6 chains were able to diffuse freely to crystallize under isothermal conditions. Liu model predicted that, at unit crystallization time, a higher cooling rate should be used to obtain a higher degree of crystallinity for both PA6 and PA6/EBA blends. The kinetic crystallizability of PA6 in the blends calculated using Ziabicki's approach varies depending upon the nucleation density and PA6‐rich regions present in the blend compositions. Nucleation activity of the blends estimated by Dobreva and Gutzowa method reveals that the EBA particles are inert at lower concentrations of EBA and do not act as nucleating agent for PA6 molecules in the blends. The activation energy of nonisothermal crystallization, calculated using Augis–Bennett, Kissinger, and Takhor methods indicated that the activation energy is slightly lower for the blends when compared to the neat PA6. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Crystallization behavior of biodegradable poly(L ‐lactide) (PLLA) and its nanocomposites at different carboxyl‐functionalized multiwalled carbon nanotubes (f‐MWNTs) contents from the amorphous state was studied in detail in this work. For the isothermal cold crystallization, the presence of f‐MWNTs enhances the isothermal cold crystallization of PLLA in the nanocomposites compared with that of neat PLLA at the same crystallization temperature; moreover, the overall cold crystallization rate of PLLA increases with increasing the f‐MWNTs content in the PLLA matrix while the crystallization mechanism does not change. For the nonisothermal crystallization, the f‐MWNTs also accelerate the crystallization process of PLLA. In addition, the activation energies of nonisothermal cold crystallization process were calculated using both the Kissinger and Friedman methods. The cold crystallization activation energies of PLLA are higher in the nanocomposites than in neat PLLA, indicating that the addition of f‐MWNTs into the PLLA matrix acts as a physical hindrance to retard crystallization. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号