首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new triangular thin‐shell finite element formulation is presented, which employs only translational degrees of freedom. The formulation allows for large deformations, and it is based on the nonlinear Kirchhoff thin‐shell theory. A number of static and dynamic test problems are considered for which analytical or benchmark solutions exist. Comparisons between the predictions of the new model and these solutions show that the new model accurately reproduces complex nonlinear analytical solutions as well as solutions obtained using existing, more complex finite element formulations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a triangular thin flat shell element without rotation degrees of freedom is proposed. In the Kirchhoff hypothesis, the first derivative of the displacement must be continuous because there are second‐order differential terms of the displacement in the weak form of the governing equations. The displacement is expressed as a linear function and the nodal rotation is defined using node‐based smoothed finite element method. The rotation field is approximated using the nodal rotation and linear shape functions. This rotation field is linear in an element and continuous between elements. The curvature is defined by differentiating the rotation field, and the stiffness is calculated from the curvature. A hybrid stress triangular membrane element was used to construct the shell element. The penalty technique was used to apply the rotation boundary conditions. The proposed element was verified through several numerical examples.  相似文献   

3.
A triangular shell element for the simulation of textile composite reinforcements forming is proposed. This element is made up of unit woven cells. The internal virtual works are added on all woven cells of the element. They depend on tensions, in‐plane shear and bending moments that are directly those given by the experimental tests that are specific to textile composite reinforcement. The element has only displacement degrees of freedom; the bending curvatures are obtained from the displacement of the neighbouring elements. A set of example shows the efficiency of the approach and the relative roles of the tensile, in‐plane shear and bending rigidities. Especially their influence on the appearance and the development of wrinkles in draping and forming tests is analysed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents the finite rotation exact geometry (EG) 12‐node solid‐shell element with 36 displacement degrees of freedom. The term ‘EG’ reflects the fact that coefficients of the first and second fundamental forms of the reference surface and Christoffel symbols are taken exactly at each element node. The finite element formulation developed is based on the 9‐parameter shell model by employing a new concept of sampling surfaces (S‐surfaces) inside the shell body. We introduce three S‐surfaces, namely, bottom, middle and top, and choose nine displacements of these surfaces as fundamental shell unknowns. Such choice allows one to represent the finite rotation higher order EG solid‐shell element formulation in a very compact form and to derive the strain–displacement relationships, which are objective, that is, invariant under arbitrarily large rigid‐body shell motions in convected curvilinear coordinates. The tangent stiffness matrix is evaluated by using 3D analytical integration and the explicit presentation of this matrix is given. The latter is unusual for the non‐linear EG shell element formulation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
An efficient, four‐node quadrilateral shell element is formulated using a linear, first‐order shear deformation theory. The bending part of the formulation is constructed from a cross‐diagonal assembly of four three‐node anisoparametric triangular plate elements, referred to as MIN3. Closed‐form constraint equations, which arise from the Kirchhoff constraints in the thin‐plate limit, are derived and used to eliminate the degrees‐of‐freedom associated with the ‘internal’ node of the cross‐diagonal assembly. The membrane displacement field employs an Allman‐type, drilling degrees‐of‐freedom formulation. The result is a displacement‐based, fully integrated, four‐node quadrilateral element, MIN4T, possessing six degrees‐of‐freedom at each node. Results for a set of validation plate problems demonstrate that the four‐node MIN4T has similar robustness and accuracy characteristics as the original cross‐diagonal assembly of MIN3 elements involving five nodes. The element performs well in both moderately thick and thin regimes, and it is free of shear locking. Shell validation results demonstrate superior performance of MIN4T over MIN3, possibly as a result of its higher‐order interpolation of the membrane displacements. It is also noted that the bending formulation of MIN4T is kinematically compatible with the existing anisoparametric elements of the same order of approximation, which include a two‐node Timoshenko beam element and a three‐node plate element, MIN3. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a plane beam element without rotational degrees of freedom that can be used for the analysis of non‐linear problems. The element is based on two main ideas. First, a corotational approach is adopted, which means that the kinematics of the element is decomposed into a rigid body motion part and a deformational part. Next, in the deformational part, the local nodal rotations are extrapolated as a function of the local displacements of the two nodes of the element and the first nodes to the left and right of the element. Six numerical applications are presented in order to assess the performance of the formulation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
A 6‐node curved triangular shell element formulation based on a co‐rotational framework is proposed to solve large‐displacement and large‐rotation problems, in which part of the rigid‐body translations and all rigid‐body rotations in the global co‐ordinate system are excluded in calculating the element strain energy. Thus, an element‐independent formulation is achieved. Besides three translational displacement variables, two components of the mid‐surface normal vector at each node are defined as vectorial rotational variables; these two additional variables render all nodal variables additive in an incremental solution procedure. To alleviate the membrane and shear locking phenomena, the membrane strains and the out‐of‐plane shear strains are replaced with assumed strains in calculating the element strain energy. The strategy used in the mixed interpolation of tensorial components approach is employed in defining the assumed strains. The internal force vector and the element tangent stiffness matrix are obtained from calculating directly the first derivative and second derivative of the element strain energy with respect to the nodal variables, respectively. Different from most other existing co‐rotational element formulations, all nodal variables in the present curved triangular shell formulation are commutative in calculating the second derivative of the strain energy; as a result, the element tangent stiffness matrix is symmetric and is updated by using the total values of the nodal variables in an incremental solution procedure. Such update procedure is advantageous in solving dynamic problems. Finally, several elastic plate and shell problems are solved to demonstrate the reliability, efficiency, and convergence of the present formulation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
We propose a new four‐node C0 finite element for shell structures undergoing unlimited translations and rotations. The considerations concern the general six‐field theory of shells with asymmetric strain measures in geometrically nonlinear static problems. The shell kinematics is of the two‐dimensional Cosserat continuum type and is described by two independent fields: the vector field for translations and the proper orthogonal tensor field for rotations. All three rotational parameters are treated here as independent. Hence, as a consequence of the shell theory, the proposed element has naturally six engineering degrees of freedom at each node, with the so‐called drilling rotation. This property makes the element suitable for analysis of shell structures containing folds, branches or intersections. To avoid locking phenomena we use the enhanced assumed strain (EAS) concept. We derive and linearize the modified Hu–Washizu principle for six‐field theory of shells. What makes the present approach original is the combination of EAS method with asymmetric membrane strain measures. Based on literature, we propose new enhancing field and specify the transformation matrix that accounts for the lack of symmetry. To gain knowledge about the suitability of this field for asymmetric strain measures and to assess the performance of the element, we solve typical benchmark examples with smooth geometry and examples involving orthogonal intersections of shell branches. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
In the present study first‐order shear deformable shell finite elements based on general curvilinear co‐ordinates are proposed. For the development of the present shell elements, a partial mixed variational functional with independently assumed strains is provided in order to avoid the severe locking troubles known as transverse shear and membrane lockings. Bubble functions are included in the shape function of displacement to improve the performance of the developed element. The proposed assumed strain four‐ and nine‐node elements based on the general tensor shell theory provide an efficient linkage framework for shell surface modelling and finite element analysis. In the several benchmark problems, the present shell elements with exact geometric representations demonstrate their performance compared to previously reported results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
This paper proposed a rotation‐free thin shell formulation with nodal integration for elastic–static, free vibration, and explicit dynamic analyses of structures using three‐node triangular cells and linear interpolation functions. The formulation is based on the classic Kirchhoff plate theory, in which only three translational displacements are treated as the filed variables. Based on each node, the integration domains are further formed, where the generalized gradient smoothing technique and Green divergence theorem that can relax the continuity requirement for trial function are used to construct the curvature filed. With the aid of strain smoothing operation and tensor transformation rule, the smoothed strains in the integration domain can be finally expressed by constants. The principle of virtual work is then used to establish the discretized system equations. The translational boundary conditions are imposed same as the practice of standard finite element method, while the rotational boundary conditions are constrained in the process of constructing the smoothed curvature filed. To test the performance of the present formulation, several numerical examples, including both benchmark problems and practical engineering cases, are studied. The results demonstrate that the present method possesses better accuracy and higher efficiency for both static and dynamic problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This paper extends the capabilities of previous BST and EBST rotation‐free thin shell elements to the analysis of kinked and branching surfaces. The computation of the curvature tensor is first redefined in terms of the angle change between the normals at the adjacent elements. This allows to deal with arbitrary large angles between adjacent elements and to treat kinked surfaces. A relative stiffness between elements is introduced to consider non‐homogeneous surfaces. This idea is latter generalized to deal with branching shells. Several linear and non‐linear examples are presented showing that the formulation leads to the correct results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The unsymmetric FEM is one of the effective techniques for developing finite element models immune to various mesh distortions. However, because of the inherent limitation of the metric shape functions, the resulting element models exhibit rotational frame dependence and interpolation failure under certain conditions. In this paper, by introducing the analytical trial function method used in the hybrid stress‐function element method, an effort was made to naturally eliminate these defects and improve accuracy. The key point of the new strategy is that the monomial terms (the trial functions) in the assumed metric displacement fields are replaced by the fundamental analytical solutions of plane problems. Furthermore, some rational conditions are imposed on the trial functions so that the assumed displacement fields possess fourth‐order completeness in Cartesian coordinates. The resulting element model, denoted by US‐ATFQ8, can still work well when interpolation failure modes for original unsymmetric element occur, and provide the invariance for the coordinate rotation. Numerical results show that the exact solutions for constant strain/stress, pure bending and linear bending problems can be obtained by the new element US‐ATFQ8 using arbitrary severely distorted meshes, and produce more accurate results for other more complicated problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Quasi‐conforming formulations of 4‐node stress‐resultant shell elements are presented. The element formulations use interrelated displacement–rotation interpolations. The formulation also includes drilling degrees of freedom, which improves membrane behavior and allows the modeling of stiffened plates and shells. The proposed treatment for bending provides very good results in the 4‐node shell element. The stiffness matrices for the present elements are explicitly expressed and the stresses are taken accurately at the nodal points. Compared to elements using Gauss integration, where the stresses are most accurate at the integration points, the extrapolation procedure needed for post‐processing is eliminated in the present shell element. A lot of numerical tests were carried out for the validation of the present 4‐node shell element and the results are in good agreement with references. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
A four‐node corotational quadrilateral elastoplastic shell element is presented. The local coordinate system of the element is defined by the two bisectors of the diagonal vectors generated from the four corner nodes and their cross product. This local coordinate system rotates rigidly with the element but does not deform with the element. As a result, the element rigid‐body rotations are excluded in calculating the local nodal variables from the global nodal variables. The two smallest components of each nodal orientation vector are defined as rotational variables, leading to the desired additive property for all nodal variables in a nonlinear incremental solution procedure. Different from other existing corotational finite‐element formulations, the resulting element tangent stiffness matrix is symmetric owing to the commutativity of the local nodal variables in calculating the second derivative of strains with respect to these variables. For elastoplastic analyses, the Maxwell–Huber–Hencky–von Mises yield criterion is employed, together with the backward‐Euler return‐mapping method, for the evaluation of the elastoplastic stress state; the consistent tangent modulus matrix is derived. To eliminate locking problems, we use the assumed strain method. Several elastic patch tests and elastoplastic plate/shell problems undergoing large deformation are solved to demonstrate the computational efficiency and accuracy of the proposed formulation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This paper describes a methodology for extending rotation‐free plate and beam elements to accounting for transverse shear deformation effects. The ingredients for the element formulation are a Hu–Washizu‐type mixed functional, a linear interpolation for the deflection and the shear angles over standard finite elements and a finite volume approach for computing the bending moments and the curvatures over a patch of elements. As a first application of the general procedure, we present an extension of the three‐noded rotation‐free basic plate triangle (BPT) originally developed for thin plate analysis to account for shear deformation effects of relevance for thick plates and composite‐laminated plates. The nodal deflection degrees of freedom (DOFs) of the original BPT element are enhanced with the two shear deformation angles. This allows to compute the bending and shear deformation energies leading to a simple triangular plate element with three DOFs per node (termed BPT+ element). For the thin plate case, the shear angles vanish and the element reproduces the good behaviour of the original thin BPT element. As a consequence the element is applicable to thick and thin plate situations without exhibiting shear locking effects. The numerical solution for the thick case can be found iteratively starting from the deflection values for the Kirchhoff theory using the original thin BPT element. A two‐noded rotation‐free beam element termed CCB+ applicable to slender and thick beams is derived as a particular case of the plate formulation. The examples presented show the robustness and accuracy of the BPT+ and the CCB+ elements for thick and thin plate and beam problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Among numerous finite element techniques, few models can perfectly (without any numerical problems) break through MacNeal's theorem: any 4‐node, 8‐DOF membrane element will either lock in in‐plane bending or fail to pass a C0 patch test when the element's shape is an isosceles trapezoid. In this paper, a 4‐node plane quadrilateral membrane element is developed following the unsymmetric formulation concept, which means two different sets of interpolation functions for displacement fields are simultaneously used. The first set employs the shape functions of the traditional 4‐node bilinear isoparametric element, while the second set adopts a novel composite coordinate interpolation scheme with analytical trail function method, in which the Cartesian coordinates (x,y) and the second form of quadrilateral area coordinates (QACM‐II) (S,T) are applied together. The resulting element US‐ATFQ4 exhibits amazing performance in rigorous numerical tests. It is insensitive to various serious mesh distortions, free of trapezoidal locking, and can satisfy both the classical first‐order patch test and the second‐order patch test for pure bending. Furthermore, because of usage of the second form of quadrilateral area coordinates (QACM‐II), the new element provides the invariance for the coordinate rotation. It seems that the behaviors of the present model are beyond the well‐known contradiction defined by MacNeal's theorem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, a rotation‐free triangle is formulated. Unlike the thin and degenerated shell finite element models, rotation‐free triangles employ translational displacements as the only nodal DOFs. Compared with the existing rotation‐free triangles, the present triangle is simple and physical yet its accuracy remains competitive. Using a corotational approach and the small strain assumption, the tangential bending stiffness matrix of the present triangle can be approximated by a constant matrix that does not have to be updated regardless of the displacement magnitude. This unique feature suggests that the triangle is a good candidate for fabric drape simulation in which fabric sheets are often flat initially and the displacement is much larger than those in conventional shell problems. Nonlinear shell and fabric drape examples are examined to demonstrate the efficacy of the formulation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The solid‐shell element presented in this paper has nine nodes: eight are classically located at the apexes and are fitted with three translational DOFs whereas the ninth is sited at the center and is endowed with only one DOF; a displacement along the ‘thickness’ direction. Indeed, to be used for modeling thin structures under bending effects, this kind of finite element has a favored direction where several integration points are distributed. Besides, there is solely one ‘in‐plane’ quadrature point to avoid locking phenomena and prohibitive CPU costs for large nonlinear computations. Because a reduced integration is not enough to completely prevent transverse shear locking, a shear–strain field is assumed. Compared with the other eight‐node ‘solid‐shell' bricks, the presence of a supplementary node has a main aim: getting a linear normal strain component which, along with a full three‐dimensional constitutive strain–stress behavior, allows to achieve similar results in bending cases as those obtained with the usual plane stress state hypothesis. For that, the ninth node DOF plays the role of an extra parameter essential for a quadratic interpolation of the displacement in the thickness direction. The advantage is that this DOF has a physical meaning and, for instance, a strength equivalent to a normal pressure can be prescribed. With a suitable nodal numbering, the band width is not significantly increased and meshes can easily be generated because the extra nodes are always located at element centers. To emphasize the peculiar features of such an element, a set of examples (linear and nonlinear) is carried out. Numerous comparisons with other elements show pretty good results in bending dominating problems while adding the event of a normal stress component in sheet metal forming simulations with double side contact. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A refined non‐conforming triangular plate/shell element for geometric non‐linear analysis of plates/shells using the total Lagrangian/updated Lagrangian approach is constructed in this paper based on the refined non‐conforming element method for geometric non‐linear analysis. The Allman's triangular plane element with vertex degrees of freedom and the refined triangular plate‐bending element RT9 are used to construct the present element. Numerical examples demonstrate that the accuracy of the new element is quite high in the geometric non‐linear analysis of plates/shells. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
The formulation, implementation and testing of simple, efficient and robust shell finite elements have challenged investigators over the past four decades. A new 3‐node flat triangular shell element is developed by combination of a membrane component and a plate bending component. The ANDES‐based membrane component includes rotational degrees of freedom, and the refined nonconforming element method‐based bending component involves a transverse shear correction. Numerical examples are carried out for benchmark tests. The results show that compared with some popular shell elements, the present one is simple but exhibits excellent all‐around properties (for both membrane‐and bending‐dominated situations), such as free of aspect ratio locking, passing the patch test, free of shear locking, good convergence and high suitability for thin to moderately thick plates. The developed element has already been adopted in a warpage simulation package for injection molding. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号