首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 174 毫秒
1.
研究了基于中阶梯光栅多级衍射特性实现谱段展宽的宽谱段空间外差干涉光谱仪的基础理论和系统设计方法。阐述了宽谱段空间外差干涉光谱仪的特点,分析了仪器性能指标(光谱分辨率、光谱范围、视场、信噪比、衍射级次等)与初始光学和电子学参数(光栅、视场棱镜、成像系统、探测器等)之间的理论关系。然后,设计并搭建了宽谱段空间外差干涉光谱仪实验平台,该系统的理论光谱分辨率为0.173cm-1@16 950cm-1,光谱区为500~700nm。最后,给出了激光(543.5nm、632.8nm)、Na灯(589nm、589.6nm)、Hg灯(576.96nm、579.07nm)光源的宽谱段实验结果,其复原光谱的平均波数采样间隔为0.17cm-1;光谱复原过程中采用三角切趾函数,平均光谱分辨率为0.39cm-1。实验结果与理论设计符合良好,且复原谱各级次之间的对应关系与光栅方程确定的理论关系完全符合。  相似文献   

2.
空间外差光谱仪系统设计   总被引:12,自引:3,他引:9  
围绕空间外差光谱仪系统参数设计进行了理论分析和实验研究。介绍了空间外差光谱仪系统的基本结构和原理,并针对其光学系统设计,详述了系统的主要指标:光谱分辨率极限、分辨能力、光谱范围与关键光学器件:光栅、探测器、成像系统等参数的匹配关系。给出了一个完整的系统参数设计实例,并根据光学系统参数对干涉图进行了理论仿真。以搭台的方式建立空间外差光谱仪原理试验装置,并进行了典型光谱实验验证,系统检测结果表明光谱分辨能力在591 nm达到了17 700,光谱范围为574~591 nm。实验结果与仿真结果比较还表明,系统的光谱范围、光谱分辨率等指标达到了设计要求,验证了设计方法的可行性。  相似文献   

3.
受探测器发展水平的限制,以中阶梯光栅光谱仪为分光模块的ICP-AES电感耦合等离子体原子发射光谱仪(ICP-AES)难以实现宽波段内多元素的同时测量。本文对现有中阶梯光栅光谱仪进行了改进,设计出一种适用于ICP-AES多元素同时测量的分波段式中阶梯光栅光谱仪。通过改变棱镜的入射角度,将系统波长扩展为200~900 nm,光谱分辨率为25 000,突破了现有探测器尺寸的限制,实现了宽波段范围内的多元素快速测量。将中阶梯光栅光谱仪与固态ICP光源组合,进行了系统波长标定与化学试样测试。实验结果表明:波长测试误差小于0.01 nm,满足化学元素精确判读要求;分波段式中阶梯光栅光谱仪在保持原有仪器性能的前提下,增宽了仪器的有效光谱探测范围,为多元素的同时测量提供了有效手段。  相似文献   

4.
空间外差光谱仪的平场波长定标实验与数据处理   总被引:1,自引:1,他引:0  
空间外差光谱技术综合了光栅衍射与空间调制干涉两种技术特点.由于干涉仪胶合与光栅刻划过程中存在误差,使得系统平场与理论设计值存在偏差.本文探讨了空间外差光谱仪系统平场定标的原理,通过干涉条纹频率公式推导出了系统平场定标的基本公式,设计了可调谐激光导人消散斑积分球定标方法及定标装置.针对中科院安徽光机所研制的用于大气CO2精细吸收光谱(1 575 nm吸收带)探测的空间外差光谱仪样机开展了平场定标实验.定标结果表明,仪器的实际平场波长比理论设计值向短波方向漂移了约0.05 nm,满足仪器设计要求.  相似文献   

5.
用于大气遥感探测的临边成像光谱仪   总被引:8,自引:3,他引:5  
分析了大气临边成像光谱探测的原理,依据应用要求设计研制了光栅色散型紫外/可见临边成像光谱仪原理样机。该样机采用宽波段折射式消色差前置望远光学系统与改进的Czerny-Turner光谱成像系统匹配的结构形式,工作波段为540~800nm(一级光谱)和270~400nm(二级光谱),通过切换紫外、可见带通滤光片来实现两个波段分别探测,质量为8kg,体积为450mm×250mm×200mm。用该样机进行了实验室光谱实验,并对光谱分辨率进行了分析,测量了该样机的实际光谱分辨率。测量结果表明,该样机的实际光谱分辨率为1.3nm,接近其理论光谱分辨率1.12nm,满足设计指标1.4nm的要求,并具有体积小、质量轻等特点,适合空间遥感应用。  相似文献   

6.
显微高光谱成像系统的设计   总被引:21,自引:4,他引:17  
设计出一种基于棱镜 光栅 棱镜组合分光方式的显微高光谱成像实验系统.系统根据推帚式成像光谱仪的原理进行设计,采用棱镜 光栅 棱镜组合元件在后光学系统进行光谱分光,利用高精度载物台自动装置驱动样品进行推扫成像,选用PCI总线作为数据采集的微机接口.整个系统由显微镜、分光计、面阵CCD相机、载物台自动装置以及数据采集与控制模块等几部分组成.系统的光谱范围从400nm到800nm,120个波段,光谱分辨率优于5nm,空间分辨率大约1μm.该系统具有直视性、光谱分辨率高、结构紧凑、成本低等优点;不仅能够提供微小物体在可见光范围的单波段显微图像,而且能够获得图像中任一像素的光谱曲线,实现了光谱技术和显微成像技术的结合,成功的将成像光谱技术应用到显微领域,可广泛应用于临床医学、生物学、材料学、微电子学等学科领域.  相似文献   

7.
针对不同激光波长激发测试样品所需拉曼光谱范围的差异性问题,同时为了保证拉曼光谱仪的小型化及高分辨率需求,提出一种以Czerny-Turner光路结构为基础的微型拉曼光谱仪,通过Zemax光学设计软件对光谱仪的准直镜、聚焦镜、柱面镜、光栅以及CCD的倾角及距离进行了优化。该仪器激光波长为633 nm,光谱范围为640~800 nm。进一步优化光栅旋转角度并配合聚焦镜,可使此光学系统同时适用于激光波长532 nm、光谱范围540~650 nm和激光波长785 nm、光谱范围790~1 000 nm两个波段。拉曼光谱仪分辨率为0.1 nm,该光谱仪在保证高分辨率的情况下解决了不同波段范围光学结构差异性大而导致光机设计很难整合在一起的问题。  相似文献   

8.
针对光栅光谱仪中高分辨率与宽光谱难以同时满足的问题,设计了一款基于旋转光栅的Czerny-Turner(C-T型)光路结构的高分辨率宽光谱拉曼光谱仪,激发波长为532 nm,光谱范围为80~3000 $ {\mathrm{c}\mathrm{m}}^{-1} $,分辨率为1.2 $ {\mathrm{c}\mathrm{m}}^{-1} $。将光谱范围分为低(80~1450 $ {\mathrm{c}\mathrm{m}}^{-1} $)、中(855~2225 $ {\mathrm{c}\mathrm{m}}^{-1} $)、高(1630~3000 $ {\mathrm{c}\mathrm{m}}^{-1} $)3个波段,以优化中波段为主,对全波段进行了优化。通过微调光栅的旋转角度,确保低、中、高波段均位于CCD的有效像面上。该光谱仪成像系统的点列图、均方根图和调制传递函数图均符合设计要求。  相似文献   

9.
研究了一种基于数字微镜器件(DMD)具有新型光路结构的中阶梯光栅光谱仪,并采用新的谱图信息接收方式来降低其使用成本和数据处理过程的复杂程度。将具有单波长选通功能的DMD与一维探测器光电倍增管(PMT)相结合接收中阶梯光栅光谱仪的光谱信息,在降低仪器成本的同时将中阶梯光栅光谱仪谱图还原算法与DMD扫描驱动算法相整合,提高了算法效率。由于DMD的填充因子比CCD稍低,该类光谱仪对成像质量和能量集中度提出了更高的要求。本文根据DMD型中阶梯光栅光谱仪特点,在有限的可挑选的光学材料下,采用多重优化的方式合理设计了中阶梯光栅光谱仪准直镜、中阶梯光栅、棱镜、聚焦镜等各个光学元件的光路结构参数,并且在Czerny-Turner结构中加入校正透镜和场镜,校正了系统所有像差,提高了整个光学系统的成像质量和光谱分辨率。最终设计的光谱仪系统分辨率达0.01nm,单个微反射镜内的光斑能量聚集度达到70%。  相似文献   

10.
为了保证中阶梯光栅光谱仪能够具有足够的波段范围,设计了一套校正装置,对该校正装置的校正原理、波段校正范围、校正分辨率等问题进行了讨论和研究。首先,对中阶梯光栅光谱仪的光学元件进行了公差分析,并介绍了自动光谱校正的原理和流程。选定聚焦镜作为调整环节并根据CCD接收器像面的利用情况给出了调整分辨率要求,然后设计了校正装置,并对校正装置的分辨率进行了理论计算。最后,对校正装置的校正效果进行了实验验证。实验结果表明:校正装置在方位方向的校正分辨率可达0.006 25°、俯仰方向的分辨率可达0.006 25°、前后方向的分辨率可达0.005mm。校正装置可以将10像素的波段偏移调整回CCD正常接收范围内,从而保证光谱仪器的全谱段波段范围。  相似文献   

11.
成像光谱仪工程权衡优化设计的光学结构   总被引:8,自引:5,他引:3  
对应用需求、卫星可提供资源和技术能力等方面进行综合工程技术权衡,提出了总体优化的光学结构设计方案。设计了在0.4~2.5 μm工作,焦距为800 mm,焦比为4.5,视场为1.43°的非球面三反射镜望远镜和棱镜色散非球面准直-成像光学结构的新型成像光谱仪,其调制传递函数(MTF)达到0.44~0.62,光谱分辨率为3~23 nm,仪器的总重量约为70 kg。在焦平面器件性能和信噪比等技术指标相同的情况下,如果用光栅或干涉式傅里叶变换光谱仪,则需要FN在3以下,仪器的总重量将>100 kg。取得了成像光谱仪分辨率高、积分时间短,焦平面器件接受的辐射能量弱等参数条件下的权衡优化设计。  相似文献   

12.
为提高成像光谱仪的工作波长范围,提出了基于双波段焦平面探测器(FPAs)的双衍射级次全共路Offner成像光谱仪结构。该结构中凸面光栅的一级衍射光和二级衍射光完全重叠共路传输,并可由焦平面处的双波段红外焦平面探测器IR FPAs实现级次的自然分离和同时探测。分析了该结构的工作原理和设计方法,基于几何光线追迹法仿真了谱线弯曲和色畸变特性,基于Huygens点扩散函数(PSF)仿真了光谱响应函数(SRF)并导出了光谱带宽。实验显示:双衍射级次共路Offner成像光谱仪的工作波段为3~6μm(二级衍射)和6~12μm(一级衍射),谱线弯曲和色畸变均小于0.5个像元宽度,光谱带宽分别为13.2~14.3nm(二级衍射)和28.3~33.3nm(一级衍射),两个工作波段内的衍射效率均大于或等于20%。整个系统结构简单紧凑、光谱范围宽,满足对地物或深空目标的中等分辨率的中远红外光谱探测需求。  相似文献   

13.
为了更简单地制备出可用于应力测量的光栅褶皱结构,采用基于刚性薄膜/柔性衬底的自组装工艺制备了可调谐光栅。首先在聚乙烯对苯二酸脂(PET)薄膜上旋涂一层聚二甲基硅氧烷(PDMS)薄膜,将双层薄膜弯曲并用氧气等离子体处理,在其表面生成一层刚性氧化层,借助柔性PET对刚性层施加均匀应力,当应力超过临界值时,在PDMS基底上自组装形成光栅褶皱结构。然后根据光栅分光原理,将这种可调谐的光栅结构应用于应力测试。实验结果表明:当光栅的曲率半径为1.4mm时,制备的可调谐光栅褶皱在0%~10%的应变范围得到的波长变化为452~507nm;当光栅的曲率半径为5.6mm时,制备的可调谐光栅褶皱在0%~15%的应变范围得到的波长变化为498~572nm。本文提出的可调谐光栅制备方法是一种成本低、工艺简单、可批量化生产的工艺方法,也是一种制备变间距光栅的潜在方法,未来有望应用于光谱仪、光通讯等领域。  相似文献   

14.
王欣  刘强  舒嵘 《光学精密工程》2019,27(3):533-541
根据大视场和快焦比空间遥感高光谱成像仪的研究目标,采用折叠三反施密特望远镜和自由曲面Offner凸面光栅光谱仪结构,设计了一个视场为5°,焦比为2,工作谱段在400~1 000nm,光谱分辨率为5nm的星载高光谱成像仪光学系统。推导了非对称非球面施密特主镜的理论计算方法,介绍了镜面的制造方法。利用Zemax光学设计软件进行了光线追迹和优化设计,结果显示光谱畸变0.88%,光谱弯曲1/3探测器像元,所有谱段的光学传递函数均大于0.8,满足星载高光谱成像仪的技术要求。施密特系统结构简单,仅含有一个非球面,在大视场工作时具有像质优良和畸变小的特点,且中心遮拦比小、体积紧凑,适合未来大视场快焦比的大口径星载遥感应用。  相似文献   

15.
凸面光栅成像光谱仪的研制与应用   总被引:6,自引:2,他引:4  
考虑传统光栅成像光谱仪受光学畸变的限制难以同时实现大光学孔径和小型化要求,利用全息法设计并制作了凸面光栅,并以该凸面光栅作为核心元件研制了便携式成像光谱仪。该光谱仪以推扫方式进行目标扫描,获取成像光谱数据立方。仪器的光谱分辨率为2.4 nm,光谱谱线弯曲为0.1%,色畸变为0.6%,体积为209 mm×199 mm×110 mm。介绍了仪器的工作原理和结构设计,并进行了实验室检测和室外花卉实际光谱测量。测试结果表明:凸面光栅成像光谱仪的光谱分辨率为2.1 nm,光谱谱线弯曲为0.09%,色畸变为0.6%,均满足设计要求,实际花卉光谱测试亦取得了较为理想的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号