首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bisupported Ziegler–Natta catalyst system SiO2/MgCl2 (ethoxide type)/TiCl4/di‐n‐butyl phthalate/triethylaluminum (TEA)/dimethoxy methyl cyclohexyl silane (DMMCHS) was prepared. TEA and di‐n‐butyl phthalate were used as a cocatalyst and an internal donor, respectively. DMMCHS was used as an external donor. The slurry polymerization of propylene was studied with the catalyst system in n‐heptane from 45 to 70°C. The effects of the TEA and H2 concentrations, temperature, and monomer pressure on the polymerization were investigated. The optimum productivity was obtained at [Al]/[DMMCHS]/[Ti] = 61.7:6.2:1 (mol/mol/mol). The highest activity of the catalyst was obtained at 60°C. Increasing the H2 concentration to 100 mL/L increased the productivity of the catalyst, but a further increase in H2 reduced the activity of the catalyst. Increasing the propylene pressure from 1 to 7 bar significantly increased the polymer yield. The isotacticity index (II) decreased with increasing TEA, but the H2 concentration, temperature, and monomer pressure did not have a significant effect on the II value. The viscosity‐average molecular weight decreased with increasing temperature and with the addition of H2. Three catalysts with different Mg/Si molar ratios were studied under the optimum conditions. The catalyst with a Mg/Si molar ratio of approximately 0.93 showed the highest activity. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1177–1181, 2003  相似文献   

2.
BACKGROUND: Kinetic and morphological aspects of slurry propylene polymerization using a MgCl2‐supported Ziegler–Natta catalyst synthesized from a Mg(OEt)2 precursor are investigated in comparison with a ball‐milled Ziegler–Natta catalyst. RESULTS: The two types of catalyst show completely different polymerization profiles: mild activation and long‐standing activity with good replication of the catalyst particles for the Mg(OEt)2‐based catalyst, and rapid activation and deactivation with severe fragmentation of the catalyst particles for the ball‐milled catalyst. The observed differences are discussed in relation to spatial distribution of TiCl4 on the outermost part and inside of the catalyst particles. CONCLUSION: The Mg(OEt)2‐based Ziegler–Natta catalyst is believed to show highly stable polymerization activity and good replication because of the uniform titanium distribution all over the catalyst particles. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
Heterogeneous Ziegler–Natta systems—MgCl2 (ethoxide type)/TiCl4/di‐n‐butyl phthalate (DNBP)/triethylaluminum (TEA)/dimethoxymethylcyclohexylsilane (DMMCHS) and SiO2/MgCl2 (ethoxide type)/TiCl4/DNBP/TEA/DMMCHS—were studied for the polymerization of propylene. The slurry polymerization of propylene was carried out with the catalyst systems in n‐heptane. Both systems performed with optimum activity at a particular [Al]/[DMMCHS]/[Ti] molar ratio. The ratio to reach the highest activity was much lower for the bisupported catalyst system. The productivity of the bisupported catalyst was higher than that of the monosupported one. Polypropylene of a high isotacticity index (II; >96%) was obtained with both systems and did not significantly change with an increasing [Al]/[DMMCHS]/[Ti] molar ratio. The addition of hydrogen as a chain‐transfer agent reduced II of the polymers obtained with both systems. The effect of the polymerization temperature (40–75°C) on the viscosity‐average molecular weight (Mv) and II showed a decrease in both cases. The bisupported catalyst system produced a polymer with higher Mv. The effect of temperature on II was similar for both the monosupported and bisupported systems. A monomer pressure of 2.02 × 105 to 0.8 × 106 Pa increased Mv of the obtained polymer. II of the polymer slightly decreased with increasing monomer pressure. The titanium content of the catalyst was 1.70 and 3.55% for the monosupported and bisupported systems, respectively. The surface area of the bisupported catalyst was higher than that of the monosupported catalyst. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2220–2226, 2006  相似文献   

4.
Ultra‐high‐molecular‐weight polyethylene (PE) with viscosity‐average molecular weight (Mv) of 3.1 × 106 to 5.2 × 106 was prepared with a heterogeneous Ziegler–Natta MgCl2 (ethoxide type)/TiCl4/triethylaluminum catalyst system under controlled conditions. The optimum activity of the catalyst was obtained at a [Al]/[Ti] molar ratio of 61 : 1 and a polymerization temperature of 60°C, whereas the activity of the catalyst increased with monomer pressure and decreased with hydrogen concentration. The titanium content of the catalyst was 2.4 wt %. The rate/time profile of the catalyst was a decay type with a short acceleration period. Mv of the PE obtained decreased with increasing hydrogen concentration and polymerization temperature. The effect of stirrer speeds from 100 to 400 rpm did not so much affect the catalyst activity; however, dramatic effects were observed on the morphology of the polymer particles obtained. A stirrer speed of 200 rpm produced PE with a uniform globulelike morphological growth on the polymer particles. The particle size distributions of the polymer samples were determined and were between 14 and 67 μm. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
This article demonstrates the influence of the molar ratio between diether as internal donor and Magnesium dichloride in processing of the catalyst preparation on the catalytic performance for propylene polymerization with MgCl2‐supported Ziegler–Natta catalyst. The effect of electron donor on catalyst is investigated. The experimental data find that diether content on catalyst increases and Ti content on catalyst decreases with the increase of diether/Mg molar ratio. This result indicates that diether as internal donor is not coordinated to Ti species but to Mg species on catalyst. The introduction of diether remarkably improves the catalytic activity. The extents of improvement closely connect with diether/Mg molar ratio. The stereospecificity of catalyst intensively depends on the structure of diether as internal donor. The possible model of multi‐active sites on heterogeneous Ziegler–Natta catalyst is proposed to explain these phenomena. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1399–1404, 2006  相似文献   

6.
The effect of the porosity of Ziegler–Natta catalyst particles on early fragmentation, nascent polymer morphology, and activity were studied. The bulk polymerization of propylene was carried out with three different heterogeneous Ziegler–Natta catalysts under industrial conditions at low temperatures, that is, with a novel self‐supported catalyst (A), a SiO2‐supported catalyst (B), and a MgCl2‐supported catalyst (C), with triethyl aluminum as a cocatalyst and dicyclopentyl dimethoxy silane as an external donor. The compact catalyst A exhibited no measurable porosity and a very low surface area (<5 m2/g) by Brunauer–Emmet–Teller analysis, whereas catalysts B and C showed surface areas of 63 and 250 m2/g, respectively. The surface and cross‐sectional morphologies of the resulting polymer particles at different stages of particle growth were analyzed by scanning electron microscopy and transmission electron microscopy. The compact catalyst A showed homogeneous and instantaneous fragmentation already in the very early stages of polymerization, which is typically observed for porous MgCl2‐supported Ziegler–Natta catalysts. Moreover, the compact catalyst particles gave rise to almost perfectly spherical polymer particles with a smooth surface. In contrast, the silica‐supported catalyst B gave rise to particles having a cauliflower morphology, and the second reference catalyst C produced fairly spherical polymer particles with a rough surface. All of the three catalysts exhibited similar activities of 450 g of polypropylene/g of catalyst after 30 min of polymerization, and most interestingly, the comparative kinetic data presented indicated that the reaction rates were not influenced by the porosity of the catalyst. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008.  相似文献   

7.
Four cocatalysts, referred to as ethylaluminoxanes, were synthesized by the reaction between triethylaluminium (AIEt3) and water under various molar ratios of H2O/Al at ?78°C. Aluminoxanes were used as cocatalysts for a MgCl2‐supported Ziegler–Natta catalyst for propylene polymerization at temperatures ranging from 70 to 100°C. When the polymerization was activated by AlEt3, the activity as well as the molecular weight and isotacticity of the resulting polymer gradually dropped as the temperature varied from 70 to 100°C. When ethylaluminoxane was employed as the cocatalyst, good activity and high molecular weight and isotacticity were obtained at 100°C. Furthermore, when the cocatalyst varied from AlEt3 to ethylaluminoxane, the atactic fraction and polymer fraction with moderate isotacticity decreased and the high isotactic fraction slightly increased, which indicated that the variation of the cocatalyst significantly affects the isospecificity of active sites. It was suggested that the reactivity of the Al‐Et group and the size of the cocatalyst were correlated to the performance of the Ziegler–Natta catalyst at different temperatures. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1978–1982, 2006  相似文献   

8.
The initial stages of gas‐phase polymerizations of propylene and ethylene are analyzed using a fixed bed stopped flow reactor. The very early development of particle morphology and polymer properties is analyzed for three different commercial catalyst systems: MgCl2‐ and SiO2‐supported Ziegler–Natta and SiO2‐supported metallocene. It is shown that, depending on the operating conditions, distinct nonuniform catalyst fragmentation patterns can develop, confirming different scenarios described by published fragmentation models. In addition, it is shown that the molecular weight distributions and polymer yields obtained during the very early stages of the polymerization suggest the existence of significant temperature gradients inside the growing polymer particles. Finally, it is shown that the ratio of catalyst to glass beads in the bed can have a pronounced effect on the evolution of the polymerization reaction. This can be interpreted in terms of the significant temperature difference between the polymer particles and the gaseous monomer stream. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

9.
The kinetics of ethylene polymerization with a TiCl4/MgCl2‐type Ziegler–Natta catalyst was studied. Changes in polymerization activity and concentration of active centers ([C*]) in the first 5 min were determined. Initiation of the active centers was found to proceed in two stages. In the first stage, [C*]/[Ti] quickly rose to about 1% in less than 30 s and then remained stable in the subsequent 60 s. Then the [C*]/[Ti] value started to increase again, forming the second buildup stage. The polymerization activity was found to change roughly in parallel with the change in [C*]/[Ti]. Changes in the polymer/catalyst particle morphology and polymer molecular weight distribution with polymerization time were studied. A mechanistic model was proposed to explain the two‐stage kinetics: initiation of active sites on the outer surface of catalyst particles takes place in the first stage, and initiation of active sites buried inside the particles takes place in the second stage. These buried sites are released when the catalyst particles are fragmented by the expanding polymer phase. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45187.  相似文献   

10.
The aluminum aryloxide was prepared via the reaction of phenolic antioxidant, 3‐(3,5‐di‐t‐butyl‐4‐hydroxyphenyl)‐N‐octadecylpropionamide, with triethyl aluminum. Propylene polymerization using supported Ziegler–Natta catalyst systems was carried out in the presence of the antioxidant or its aluminum aryloxide. Although the antioxidant gave rise to decrease in catalyst yield and change in hydrogen response, the aluminum aryloxide had no influence on the catalytic polymerization behavior, and thus the obtained polymer characteristics such as molecular weight, polydispersity, and meso pentad as a stereoregularity were comparable to that polymerized without the antioxidant and the aluminum aryloxide. Polypropylene obtained in the presence of the aluminum aryloxide was well stabilized for oxidation and its stability was over 1000 h at 100°C (estimated to be over 30 years at room temperature). © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1350–1358, 2006  相似文献   

11.
The influence of combined external donor (ED) (diphenyldimethoxysilane/dicyclopentyldimethoxysilane) and combined cocatalyst (triethylaluminum/triisobutylaluminum) on propylene polymerization with MgCl2‐supported Ziegler–Natta catalyst in the presence of hydrogen was investigated. By deconvolution analysis of the molecular weight distribution (MWD) into multiple Flory components, the influence of ED and cocatalyst on the active center distribution of the catalyst was demonstrated, and the mechanism was discussed. Using combined cocatalyst and combined donor, iPP with high molecular weight, high isotacticity index, and broad MWD can be obtained. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41689.  相似文献   

12.
A novel self‐supported emulsion‐based catalyst and a conventional MgCl2‐supported Ziegler–Natta catalyst were used in the copolymerization of propylene and ethylene under industrial conditions using triethyl aluminium as cocatalyst and dicyclopentyl dimethoxy silane as external donor. The effects of the concentration of ethylene and hydrogen on the polymerization behaviors and polymer properties were investigated. The combined effect of both ethylene and hydrogen increased the relative activity of the novel catalyst more than for the conventional catalyst. This trend was consistent with our earlier observed higher degree of dormancy, due to 2,1 insertions, found with the novel catalyst. More importantly, the work has uncovered that the self‐supported catalyst incorporates ethylene in a more random fashion and produces copolymers with relatively narrow molecular weight distribution (MWD). These results in combination with polymer microstructure studies using Fourier transform infrared spectroscopy, 13C‐NMR spectroscopy, and differential scanning calorimetry all indicated that the novel catalyst has a narrower distribution of active site types than the conventional reference catalyst. The narrow composition of active site structures, the narrow MWD, and the random incorporation of ethylene into the polymer chain indicated that the emulsion‐based catalyst possesses features that to a certain degree tend to be more indicative for a single‐site‐like catalyst structure and behavior. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
In this article, preparation of novel MgCl2‐adduct supported spherical Ziegler–Natta catalyst for α‐olefin polymerization is reported. The factors affecting the particle size (PS) and particle size distribution (PSD) of the prepared support were investigated. In this method, the internal donor added while preparing MgCl2‐adduct support was supposed to act as a crosslinking agent. Therefore it provided a reasonable way to enhance the morphology and control the PS of the resultant polymer particles. The possible mechanism is discussed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 945–948, 2006  相似文献   

14.
The drop‐in of metallocene catalysts (MCs) in existing industrial polymerization plants is the current goal of most polymer producers. However, the narrow molecular weight distribution (MWD) of the polymers produced by MCs prevent them of moving into commodities market dominated by conventional Ziegler–Natta catalysts, where ease of processing is an essential property. Broader MWDs may be obtained through mixing of different MCs or blending of different resins, but resin‐compatibility problems and complex undesirable catalyst interactions pose technological problems that have yet to be solved. For these reasons, modern olefin polymerization plants have to work with both catalysts to respond to market demands, resulting in costly operations of grade/catalyst change. In this article, we describe how periodic control of short residence‐time reactors operating with an MC (Me2Si(2‐Me‐Benz[e]Ind)2ZrCl2/MAO) can lead to polymers with broad MWD and, consequently, to high processability. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 437–452, 2000  相似文献   

15.
MgCl2 for use as a catalyst support was prepared by dissolution in methanol and recrystallization in n-decane, followed by vacuum-drying at 2,000 rpm. The prepared support was modified by treatment with alkylaluminum compounds. The activity profile of ethylene over the supported catalysts persisted for periods up to 1 h during the polymerization. The prepared Ziegler–Natta/metallocene hybrid catalysts exhibited the characteristics of both metallocene and Ziegler–Natta catalysts. The polymer produced by the hybrid catalysts gave bimodal peaks in differential scanning calorimetry analysis for ethylene and ethylene/1-hexene polymerization, suggesting that the polymer was composed of two different lamellar structures that were polymerized by each catalyst. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1707–1715, 1998  相似文献   

16.
Three isomeric 5‐norbornene‐2,3‐dicarboxylic acid diethyl ester (NDDE) with endo‐, exo‐, and trans‐configuration have been synthesized and employed as internal electron donors (IED) in 1‐butene polymerization over magnesium chloride supported Ziegler–Natta catalysts. It was found that the configuration of NDDE plays a key role in tuning the catalyst activity, stereospecificity, molecular weight (MW), and polydispersity index (PDI) of resulting poly(1‐butene). The type of catalyst with cis‐5‐norbornene‐endo‐2,3‐dicarboxylic acid diethyl ester as IED shows the highest catalyst activity, while catalyst with trans‐NDDE as IED yields the poly(1‐butene) with the highest MW and the most broad PDI. IR results showed that the NDDE with endo‐, exo‐, and trans‐configuration have different coordination way to MgCl2, subsequently affecting the catalysts performance. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40758.  相似文献   

17.
The effects of butyl chloride as a promoter in the ethylene polymerization were studied using a Mg(OEt)2/TiCl4/triethyl aluminum (TEA) Ziegler–Natta catalyst system, where Mg(OEt)2, TiCl4, TEA were used as support, catalyst, and activator, respectively. The influence of BC on the catalyst performance, polymerization rate, and polymer properties were investigated. This study strongly indicates that BC could act as a promoter with high performance in the ethylene polymerization. There was a remarkable increase in the catalyst yield and polymerization rate, in particularly, in the presence of hydrogen which was used for controlling the molecular weight. A reduction in the polymer molecular weight was observed in the presence of BC and hydrogen. The morphology of the polymers was evaluated through scanning electron microscopy and particle size distribution. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40189.  相似文献   

18.
In this research, a novel MgCl2-supported TiCl4 catalyst in conjunction with bifunctional internal donor was synthesized. The effects of internal donor on propylene polymerization behaviors and polymer properties (morphology, M w and MWD) were investigated. It was found that the activity of novel catalyst was higher than that of the traditional DIBP-based Ziegler–Natta catalyst, while the catalyst activity was less influenced by the ether group length of the bifunctional internal donor. It was also observed that the MWD of PP obtained by bifunctional internal donor-based catalyst was broader than that of PP made by DIBP-based Ziegler–Natta catalyst.  相似文献   

19.
A silica support for use in olefin polymerization was prepared by the gelation of a stable, colloidal phase of silica sol using a MgCl2 solution as the initiator. The Ziegler‐Natta/Metallocene hybrid catalysts prepared using this support exhibited characteristics of both Ziegler‐Natta and metallocene catalysts. The polymers produced by the hybrid catalysts showed a bimodal molecular weight distribution pattern and two different melting points, corresponding to products arising from each catalyst. This suggests that the hybrid catalysts acted as individual active species and produced a blend of polymers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2318–2326, 2000  相似文献   

20.
A series of isotactic polybutene‐1/polypropylene (PB/PP) alloys with spherical morphology were prepared by MgCl2‐supported Ziegler‐Natta catalyst with sequential two‐stage polymerization technology. The first formed PP particles were used as micro‐reactors to initiate the bulk precipitation polymerization of butene‐1 further. The porous PP particles as a hard framework may prevent the adhesion of PB particles during the bulk precipitation polymerization process. At the same time, the bulk precipitation polymerization process allows for maximization of the butene‐1 polymerization rate and simplifies the butene‐1 polymerization process considerably. Finally, spherical PB alloys with a super‐high molecular weight PB component and adjustable PP component were synthesized in situ within the reactor. The structures and properties of the PB/PP alloys were characterized by gel permeation chromatography, 13C nuclear magnetic resonance, Fourier transform IR, scanning electron microscopy, differential scanning calorimetry and X‐ray diffraction. The results showed that the MgCl2‐supported Ziegler‐Natta catalyst showed relatively high stereospecificity and efficiency for both propylene and butene‐1 polymerization. The incorporation of propylene on the PB matrix affects the properties of the final products markedly. The PB/PP alloys are expected to have a broader range of applications as a new family of high performance materials. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号