首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
不同加载压力下炸药冲击起爆过程实验和数值模拟研究   总被引:2,自引:1,他引:1  
采用炸药平面透镜爆轰加载及空气与隔板综合衰减技术,建立基于锰铜压阻传感器的 一维拉格朗日实验分析系统,得到了3 种加载压力下两种颗粒度PBXC03 炸药冲击起爆不同拉格 朗日位置的压力历史,以及加载压力对炸药冲击起爆过程的影响规律。采用DYNA2D 程序,对两 种颗粒度PBXC03 炸药的冲击起爆过程进行数值模拟,计算结果与实验结果趋势一致。结果均表 明:加载压力减小,炸药中前导冲击波速度增长变慢,压力增长变缓,炸药的到爆轰距离增加。数值 模拟得到的两种颗粒度PBXC03 炸药起爆压力和到爆轰距离的关系与文献[15] 的POP 图曲线吻 合较好,验证了文献[14]建立的PBX 炸药冲击起爆细观反应速率模型的合理性。  相似文献   

2.
为了系统研究载荷和炸药细观结构对高聚物粘结炸药(Polymer Bonded Explosive,PBX)冲击起爆爆轰成长的影响规律,考虑到炸药低压慢反应阶段的燃烧拓扑结构包含颗粒内部孔隙表面燃烧和颗粒外表面燃烧形式,以及装药密度的影响,引入燃耗因子和装药密度影响因子,改进了Duan-Zhang-Kim(DZK)细观反应速率模型。采用同一套反应速率模型参数,数值模拟各实验状态下HMX基PBXC03(87%HMX,7%TATB,6%Viton)的冲击起爆过程,数值模拟结果与实验测试结果均吻合较好,表明改进DZK反应速率模型可更好地描述和预测载荷和炸药细观结构对PBXC03冲击起爆爆轰成长过程的影响规律。在本研究装药和加载条件下,中等密度的炸药冲击起爆和爆轰成长最快;颗粒度越小,炸药越难点火,但一旦点火,爆轰成长最快。  相似文献   

3.
飞片冲击起爆高能钝感高聚物粘结炸药的实验研究   总被引:1,自引:1,他引:0  
为了对比奥克托今(HMX)基和三氨基三硝基苯(TATB)基高聚物粘结(PBX)炸药冲击起爆爆轰建立过程的差异,研究高能钝感炸药的爆轰成长特性,采用火炮驱动铝飞片实现平面冲击加载,建立一维拉格朗日锰铜压阻实验测试系统,得到高能PBXC03(以HMX为主)和高能钝感PBXC10(以TATB为主)炸药冲击起爆爆轰成长过程的不同拉格朗日位置处压力变化历史和前导冲击波时程曲线。结果表明:高能钝感PBXC10炸药的爆轰建立过程与高能PBXC03炸药明显不同,HMX基和TATB基PBX炸药冲击起爆和爆轰成长的物理机制存在较大差异。基于所得数据可标定高能钝感PBX炸药的反应速率方程。  相似文献   

4.
为对比奥克托今(HMX)基和三氨基三硝基苯(TATB)基高聚物粘结(PBX)炸药冲击起爆反应流场的差异,研究非理想PBX炸药冲击起爆爆轰成长特性,采用拉格朗日分析方法,分别以PBXC03(以HMX为主)和PBXC10(以TATB为主)炸药拉氏实验获得的压力历史曲线作为输入量。构造径线,对守恒方程进行积分,求得冲击起爆反应流场中质点速度、相对比容以及比内能的变化。比较PBXC03和PBXC10炸药反应流场,结果显示PBXC10炸药在冲击波阵面后没有明显的质点速度增长过程,能量释放过程发生在冲击波阵面处。这表明HMX基和TATB基PBX炸药爆轰成长过程的物理机制存在较大差异。  相似文献   

5.
HMX基PBX炸药的等熵压缩实验研究   总被引:1,自引:1,他引:0  
利用磁驱动准等熵压缩加载实验技术,研究了某奥克托今(HMX)基高聚物粘结炸药(PBX)未反应固体炸药峰值压力8 GPa内的动力学响应特点。实验在保持多样品加载压力历史一致的前提下,同时加载多个不同厚度实验样品,用激光干涉测速方法获得了样品的速度响应历史曲线,对实验数据进行了Lagrange分析处理,获得了该PBX炸药样品8 GPa内的准等熵压缩线,多发实验获得的准等熵压缩线在该压力范围内一致,基于该状态方程的拟合参数对实验结果进行了流体动力学计算,计算结果与实验结果吻合较好。  相似文献   

6.
为了探究钝感熔铸含铝炸药的冲击起爆特性,建立化学爆炸加载一维拉格朗日锰铜压阻测试系统,获得了不同加载压力下一典型2,4?二硝基苯甲醚(DNAN)基钝感熔铸含铝炸药的冲击起爆过程压力成长历史。利用熔铸含铝Duan?Zhang?Kim(DZK)细观反应速率模型,确定了该钝感含铝炸药的反应速率模型参数,并对其冲击起爆过程进行了数值模拟研究。结果表明在钝感熔铸含铝炸药的冲击起爆过程中,波阵面附近炸药的反应速率和反应程度均较低,而随着热点点火反应的进行以及化学反应的不断累积,炸药的波后化学反应速率不断增加,并在一段时间后到达峰值。当加载压力越高时,钝感熔铸含铝炸药内部的爆轰成长速率越快。同时,与粒子速度成长历史相比,压力成长历史包含更多的反应速率变化信息,更适用于反应速率模型的验证以及炸药反应流模型参数的确定。  相似文献   

7.
为钝感高能炸药安全性设计和应用提供理论依据和物理基础,深入开展钝感熔铸含铝炸药冲击起爆特性实验研究。建立蓝宝石飞片平面撞击加载炸药一维拉格朗日分析组合式电磁粒子速度计实验测试系统,测量2,4-二硝基苯甲醚(DNAN)基熔铸含铝炸药冲击起爆爆轰成长过程中不同拉格朗日位置的粒子速度-时间变化曲线,获得飞片撞击速度和固相炸药颗粒度等变化对其冲击起爆爆轰成长的影响规律,并确定了该熔铸含铝炸药的冲击Hugoniot关系(D=2.439+2.137u,D为冲击波传播速度,u为粒子速度)和未反应炸药状态方程参数。结果表明:DNAN基熔铸含铝炸药冲击起爆爆轰成长过程的典型粒子速度曲线呈驼峰状,冲击波阵面波后粒子速度明显上升并加速追赶前导波阵面,冲击起爆过程整体表现为加速反应特征;在该装药颗粒度级配范围和加载压力下,加载压力越高或固相炸药颗粒度越小,炸药冲击起爆爆轰成长越快,越早转为爆轰。  相似文献   

8.
复杂坑道内温压炸药冲击波效应试验研究   总被引:1,自引:0,他引:1  
通过在复杂坑道中进行温压炸药和TNT炸药爆炸试验,分别获得了冲击波峰值压力、冲击波冲量和热响应温度曲线。研究了温压炸药爆炸冲击波在复杂坑道环境内的传播规律,并对比分析了温压炸药和TNT炸药爆炸效应参数的特性。研究结果表明:复杂坑道冲击波超压曲线出现几个峰值,随着爆心距的增加,首峰不再是最大峰值;弯道不但能显著减小炸药爆炸冲击波峰值压力,而且还能增大冲击波冲量;温压炸药试样在坑道中的冲击波超压峰值、冲击波冲量及热响应温度普遍大于TNT炸药,并且出现了明显的二次燃烧现象。  相似文献   

9.
较宽压力范围内未反应炸药的动力学响应特性对于深入认识压缩波作用下炸药起爆热点形成机制具有重要意义.磁驱动准等熵压缩加载(无冲击压缩)是获取较宽压力范围内未反应炸药的动态压缩力学特性的有效手段.基于大电流产生的电磁力作用原理,在国内率先实现了炸药的磁驱动无冲击压缩实验技术,获得了5 GPa内JO-9159炸药在磁驱动准等...  相似文献   

10.
为了解2,4-二硝基苯甲醚(DNAN)基高固含量熔铸炸药(20%DNAN/15%HMX/32.5%NTO/31%Al/1.5% 功能助剂,固含量78.5%)的动态力学性能,对其进行分析。使用万能材料试验机及分离式霍普金森杆(split Hopkinson pressure bar,SHPB)对DNAN 基熔铸炸药样品进行准静态与动态加载,获取炸药样品在准静态加载与动态加载条件 下的应力应变曲线;依据应力应变曲线,标定炸药的Maxwell 模型参数,并通过数值仿真对模型及标定参数进行验 证。验证结果表明:DNAN 基熔铸炸药失效应变低于1.6%,脆性大,随着加载应变率增大,材料失效应力随之增加, 机械响应应变率相关;Maxwell 模型标定参数准确,能较好地反映炸药在不同应变率加载下的力学性能。  相似文献   

11.
陈闯  郝永平  杨丽  王晓鸣  李文彬  李伟兵 《兵工学报》2017,38(10):1957-1964
为研究双层介质隔板下被发炸药的冲击起爆特性,建立了考虑侧向稀疏波影响的被发炸药冲击波能量计算模型,并开展锰铜压阻传感器测压试验。获得了由有机玻璃与LY-12铝合金组合的双层介质隔板排序(两种不同波阻抗顺序)、总厚度h(30~60 mm)与厚度分配(有机玻璃厚度比例10%~90%)对透射到被发炸药中冲击波各参量的影响规律,试验验证了被发炸药透射冲击波压力及其冲击起爆情况。研究结果表明:选取波阻抗递增的排序时透射冲击波能量较低,对炸药的安全性更有利;随着总厚度的增加,透射冲击波能量逐渐降低,且下降幅度逐渐减小;透射冲击波能量随厚度分配的变化规律与总厚度有关,随着有机玻璃厚度比例的增加,透射冲击波能量呈不断递增(h=30 mm)、先递增再递减(h为40~60 mm)的趋势。  相似文献   

12.
钝感HNS-IV 炸药飞片冲击起爆数值仿真   总被引:1,自引:0,他引:1       下载免费PDF全文
为获得HNS-IV在飞片冲击下的窄脉冲宽度的起爆特性,使用Lee-Tarver点火增长模型和有限元分析软件,对不同直径、厚度的聚酰亚胺飞片撞击HNS-IV炸药过程进行数值模拟.按照试验装置的设计方案,建立数值模拟模型,对不同直径、厚度飞片冲击起爆HNS-IV炸药的机理及影响规律进行分析.仿真结果表明:在飞片厚度一定的条件下,飞片直径增大相应的引爆阈值压力和引爆阈值速度减小;在飞片直径一定的条件下,随着飞片厚度的增加,炸药的引爆阈值压力和引爆阈值速度减小;随着炸药密度的降低,炸药阈值引爆的飞片速度也随之减小.对于HNS-IV炸药,计算所得引爆阈值压力和脉冲持续时间经拟合后所得曲线满足constnpτ=的判据,确定其临界起爆能量.  相似文献   

13.
冲击载荷作用下两种HMX基抗高过载炸药损伤特性   总被引:1,自引:1,他引:0  
为研究炸药在高过载条件下的损伤特性及损伤破坏机理,选取两种不同成型工艺下(浇注,压装)的奥克托今(HMX)基抗高过载炸药作为研究对象,用冲击波感度试验对炸药进行冲击损伤,通过CT检测表征试验前后炸药的损伤程度,同时测试了冲击损伤后炸药的冲击波感度。CT检测结果表明,冲击损伤后压装成型炸药各观测界面均未出现宏观损伤,而浇注成型炸药在距见证板一端7~8mm位置,出现了长度7~8mm、直径1~2mm的孔洞,浇注炸药在距离下端面40mm以上,损伤后的CT值降低1%~5%,压装炸药在距离下端面50mm以上,损伤后的CT值升高1%~8%。冲击损伤后两种炸药的冲击波感度均降低,其中浇成型注炸药由未损伤时的临界隔板厚度25~27mm下降到13~15mm;压装成型炸药由未损伤时的临界隔板厚度38~40mm下降到30~32mm。  相似文献   

14.
为了研究有限厚炸药在射流冲击下的起爆过程,并得到有限厚炸药的临界起爆阈值。试验采用Φ40 mm聚能装药作为射流源,通过高速录像进行拍摄,对不同厚度的50SiMnVB盖板覆盖下的43 mm厚TNT炸药进行了射流冲击起爆试验,得到炸药的临界起爆阈值和不同刺激强度下的响应情况以及反应产物的膨胀速度。采用数值仿真软件进行了有限厚炸药在射流冲击下的数值模拟计算,得到了射流冲击下炸药内弯曲冲击波发展过程以及有限厚炸药的临界起爆阈值和炸药厚度关系,并通过试验结果进行了验证。最后建立了有限厚炸药临界起爆阈值和临界盖板厚度的计算模型。结果表明:厚度43 mm的TNT临界起爆阈值为37 mm3·μs^-2,并且在不同响应之间反应产物的膨胀速度相差至少一个数量级。射流冲击有限厚炸药时,弯曲波发展为爆轰波需要一定距离,剩余射流头部速度越高,弯曲波发展为爆轰波所需的距离越短。炸药厚度的减少将导致有限厚炸药的临界起爆阈值和临界盖板厚度的增加,并且有限厚炸药的临界起爆阈值的对数与炸药厚度的对数近似呈线性关系。  相似文献   

15.
为分析黑索今(RDX)基含铝炸药中铝粉的颗粒尺寸对炸药冲击点火的影响,以及建立该含铝炸药冲击点火的细观反应速率模型,开展了含铝炸药冲击起爆的实验和数值模拟研究。设计5 μm、 16 μm、40 μm和100 μm不同铝粉粒径,具有相同组分配比和RDX颗粒尺寸的4种炸药配方,对4种RDX基含铝炸药进行了冲击点火起爆实验;通过合理假设,提出RDX基含铝炸药的细观点火模型,并在考虑点火增长的基础上,完善细观反应速率模型,利用细观反应速率模型和含铝炸药的I&G模型对上述实验进行了数值模拟。实验和数值模拟结果表明:对于100 μm、 40 μm、 16 μm和 5 μm粒径铝粉含铝炸药,铝粉在CJ面前的反应度分别为0.80%、2.45%、3.20%和4.15%;随着RDX基含铝炸药中的铝粉尺寸减小,铝粉在CJ面前的反应速率增快,炸药中的前导冲击波传播速度变快且压力峰值增高,压力峰值的出现时间与前导冲击波到达时间的间隔减短,炸药的冲击感度提高;与I&G模型相比,细观反应速率模型计算的压力历史与实验结果更为吻合;细观模型能较好地模拟较大尺寸颗粒铝粉(铝粉尺寸大于炸药颗粒尺寸的1/10)的反应特征,对于100 μm和40 μm铝粉粒径含铝炸药,模拟计算每个拉格朗日位置的前导冲击波到达时间、压力峰值时间和压力峰值等参量与实验结果相差不超过10%。  相似文献   

16.
弹药在聚能射流作用下的反应机制和响应规律,对弹药安全性研究具有重要意义.针对隔板中前驱冲击波起爆炸药机制及炸药温度的影响,开展实验和数值模拟研究.设计大尺寸装药聚能射流侵彻不同厚度隔板,起爆加热炸药的实验装置,采用上下两端加热和侧面保温的方式,实现炸药均匀加热和温度控制.选取黑索今(RDX)含铝(Al)炸药(炸药配方质...  相似文献   

17.
为研究2,4-二硝基苯甲醚(DNAN)基含铝炸药的爆轰性能,采用全光纤激光干涉测速仪(DISAR),测量了两种含铝炸药——RBOL-2(DNAN/HMX/Al/添加剂)和RMOE-2(DNAN/HMX/NTO/Al/添加剂)爆轰端面与窗口界面粒子速度以及驱动金属平板自由表面速度,得到两种炸药的爆轰反应区宽度分别为(1.073±0.111)mm和(1.559±0.094)mm,CJ压力分别为(25.42±0.44)GPa和(20.99±0.15)GPa,冯·诺依曼峰值压力分别为41.27 GPa和27.69 GPa等爆轰波结构参数。金属平板自由表面速度结果表明:RBOL-2炸药的做功能力强于RMOE-2炸药;含铝炸药达到的稳定爆轰状态与起爆加载条件有关,加载压力越高,含铝炸药的做功能力越强,在较高的加载压力(21 GPa)下,加载压力越高,参与爆轰反应区反应的铝粉越多,含铝炸药达到的爆轰状态越强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号