首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mathematical modeling has increasingly recognized as a powerful tool that could aid the understanding of shape memory behavior in semicrystalline shape memory polymer (SMP). Up to now, studies have not fully taken into account the viscous effect of the amorphous phase in the whole shape memory cycle, which causes a more realistic prediction of the SMP behavior. In this work, a constitutive thermoviscoelastic model was developed to predict the thermomechanical behavior of semicrystalline SMP. The simulated results of the proposed model for a typical uniaxial deformation were compared with the case having no dissipation effect, also with experimental data. The accuracy improvements in the results of the stress–strain trends together with fixing ratio and recovery ratio obtained from the modified model were significant. The results were in good agreement with the experimental data. The modified model revealed a real and more accurate trend by considering viscous dissipation.  相似文献   

2.
Shape‐memory polymers (SMPs) are an emerging class of active polymers that can be used on a wide range of reconfigurable structures and actuation devices. In this study, an epoxy‐based SMP was synthesized, and its thermomechanical behaviors were comprehensively characterized. The stress–strain behavior of the SMP was determined to be nonlinear, finite deformation in all regions. Strain‐energy‐based models were used to capture the complicated stress–strain behavior and shape‐recovery response of the SMP. Among various strain energy functions, the stretch‐based Ogden model provided the best fit to the experimental observations. Compared to the sophisticated models developed for SMPs, the strain‐energy‐based model was found to be reliable and much easier to use for practical SMP designs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41861.  相似文献   

3.
Shape‐memory polyurethanes (SMPUs) represent a highly interesting class of materials due to their applications in different sectors such as biomedical, textile, and aerospace. Moreover, it is possible to synthesize a variety of polyurethanes with different molecular architectures just choosing properly the chemical structure of their components. In this work, it is described the influence of the soft segment on the thermomechanical properties and shape memory behavior of shape memory polyurethanes. The synthesis, based on two‐step polymerization, was prepared by two different soft segments: poly(oxytetramethylene) glycol (PTMG) or poly(ethylene glycol) (PEG). Depending on the molecular architecture achieved, the materials present different properties that were studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Furthermore, the shape memory response of thermally activated SMPUs is determined qualitative and quantitatively by visually monitoring the shape recovery process and by thermomechanical analysis (TMA), respectively. All developed compositions have shown good shape memory behavior, with recovery ratios higher than 99.8%. POLYM. ENG. SCI., 58:238–244, 2018. © 2017 Society of Plastics Engineers  相似文献   

4.
Shape memory polymers (SMPs) have been of great interest because of their ability to be thermally actuated to recover a predetermined shape. Medical applications in clot extracting devices and stents are especially promising. We investigated the thermomechanical properties of a series of Mitsubishi SMPs for potential application as medical devices. Glass transition temperatures and moduli were measured by differential scanning calorimetry and dynamic mechanical analysis. Tensile tests were performed with 20 and 100% maximum strains, at 37 and 80°C, which are respectively, body temperature and actuation temperature. Glass transitions are in a favorable range for use in the body (35–75°C), with high glassy and rubbery shear moduli in the range of 800 and 2 MPa respectively. Constrained stress–strain recovery cycles showed very low hysteresis after three cycles, which is important to know for preconditioning of the material to ensure identical properties during applications. Isothermal free recovery tests showed shape recoveries above 94% for MP5510 thermoset SMP cured at different temperatures. One material exhibited a shape fixity of 99% and a shape recovery of 85% at 80°C over one thermomechanical cycle. These polyurethanes appear particularly well suited for medical applications in deployment devices such as stents or clot extractors. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3882–3892, 2007  相似文献   

5.
Shape memory thermosetting polyurethane (SMPU) composites containing different amount of multiwalled carbon nanotube (MWCNT) ranging from 0 to 0.250 phr were prepared. The shape memory behavior, tensile stress, and recovery stress were determined by using conventional thermomechanical cycle; however, the modified thermomechanical cycle designated as progressive stretch–relax–stretch (PSRS) cycle was also employed to create shape memory effects in studied composites. The test was carried out in water bath which was equipped with an electric heater, temperature controller, and tensile stress and strain measuring setup. The recovery and tensile stresses both were showing higher values for PSRS samples as compared with conventional samples. Loading of MWCNT improved the recovery stress of SMPU, thereby confirming reinforcing effect. The maximum recovery stress of 2.17 MPa for 0.188 phr MWCNT loading was observed as compared with 1.09 MPa of unreinforced SMPU specimen. The recovery time was also improved on reinforcement as demonstrated in this article. The morphology of fractured surface and degree of dispersion of MWCNT was studied using Field Emission Scanning Electron Microscope. The impact on glass transition temperature was also observed for MWCNT reinforcement on SMPU, which depends on the degree of dispersion and loading of MWCNT in the specimen. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44389.  相似文献   

6.
Nair DP  Cramer NB  Scott TF  Bowman CN  Shandas R 《Polymer》2010,51(19):4383-5000
In this study we introduce the use of thiol-ene photopolymers as shape memory polymer systems. The thiol-ene polymer networks are compared to a commonly utilized acrylic shape memory polymer and shown to have significantly improved properties for two different thiol-ene based polymer formulations. Using thermomechanical and mechanical analysis, we demonstrate that thiol-ene based shape memory polymer systems have comparable thermomechanical properties while also exhibiting a number of advantageous properties due to the thiol-ene polymerization mechanism which results in the formation of a homogeneous polymer network with low shrinkage stress and negligible oxygen inhibition. The resulting thiol-ene shape memory polymer systems are tough and flexible as compared to the acrylic counterparts. The polymers evaluated in this study were engineered to have a glass transition temperature between 30 and 40 °C, exhibited free strain recovery of greater than 96% and constrained stress recovery of 100%. The thiol-ene polymers exhibited excellent shape fixity and a rapid and distinct shape memory actuation response.  相似文献   

7.
Shape memory polymers (SMPs), as a class of programmable stimuli-responsive shape changing polymers, are attracting increasing attention from the standpoint of both fundamental research and technological innovations. Following a brief introduction of the conventional shape memory effect (SME), progress in new shape memory enabling mechanisms and triggering methods, variations of in shape memory forms (shape memory surfaces, hydrogels, and microparticles), new shape memory behavior (multi-SME and two-way-SME), and novel fabrication methods are reviewed. Progress in thermomechanical modeling of SMPs is also presented.  相似文献   

8.
Viscoelastic behavior has a remarkable impact on the functional realization of shape memory polymers and their composites. Our previous work reported that a series of shape memory epoxies with varied curing agents and contents were synthesized and exhibited higher shape fixture and recovery rates. The viscoelastic behavior of the materials at different temperatures is experimentally investigated in this study. Stress–strain hysteresis under uniaxial tension, stress relaxation, and creep tests are performed. The energy dissipation factor and residual strain factor as functions of temperatures are presented in the basis of stress–strain hysteresis tests. Moreover, the effects of test temperature, curing‐agent type, and content on the viscoelastic behavior of these materials are discussed. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Shape memory polymers (SMPs) are a novel class of shape memory materials which can store a deformed (temporary) shape and recover an original (permanent) shape under a shape memory thermomechanical loading–unloading cycle. The deformation mechanisms of SMPs are very complicated, but the SMPs also have a lot of advantages and the widespread application value and prospect. So developing proper constitutive models that describe thermomechanical properties of SMPs and the shape memory effect is very challenging and of great theoretical and application value. Based on the deformation mechanisms and considerable experimental investigations of SMPs, researchers have developed many constitutive models. This article investigates the deformation mechanism and introduces the recent research advance of the constitutive models of thermal‐sensitive SMPs. Special emphases are given on the micromechanical constitutive relations in which the deformation is considered being based on the microstructure of the SMPs. Finally, the lack of research and prospects for further research are discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
A series of segmented polyurethanes (PUs) with novel thermosensitive shape‐memory behavior were synthesized via the in situ addition of a small amount of 1‐octadecanol (ODO) to a PU system. For comparison, liquid paraffin (LP) modified PUs were also synthesized. The effects of a small amount of ODO or LP on the PU suprastructure and the thermosensitive shape‐memory properties were studied with X‐ray diffraction, differential scanning calorimetry, dynamic mechanical analysis, and shape‐memory studies. The results indicated that the in situ addition of a small amount of ODO (e.g., 0.3 wt %) remarkably promoted microphase separation, facilitating the ordered packing of soft segments and the formation of perfect hard‐segment domains and thus significantly improving the shape‐memory properties. In contrast, LP had less significant influence on the shape‐memory behavior because of the macrophase separation of these nonpolar alkyl chains from the PU system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5224–5231, 2006  相似文献   

11.
Thermoresponsive shape memory (SMP) fibers were prepared by melt spinning from a polyester polyol‐based polyurethane shape memory polymer (SMP) and were subjected to different postspinning operations to modify their structure. The effect of drawing and heat‐setting operations on the shape memory behavior, mechanical properties, and structure of the fibers was studied. In contrast to the as‐spun fibers, which were found to show low stress built up on straining to temporary shape and incomplete recovery to the permanent shape, the drawn and heat‐set fibers showed significantly higher stresses and complete recovery. The fibers drawn at a DR of 3.0 and heat‐set at 100°C gave stress values that were about 10 times higher than the as‐spun fibers at the same strain and showed complete recovery on repeated cycling. This improvement was likely due to the transformation brought about in the morphology of the permanent shape of the SMP fibers from randomly oriented weakly linked regions of hard and soft segments to the well‐segregated, oriented and strongly H‐bonded regions of hard‐segments. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2172–2182, 2007  相似文献   

12.
A shape memory polymer (SMP) demonstrates large reversible deformation functionality upon exposure to heating stimuli. In this study, the thermomechanical properties and deformation behavior of a unidirectional carbon-fiber-reinforced SMP composite (SMPC) laminate were studied. The findings can be used as a basis to design angle-ply laminated plates, woven laminated plates, or special laminated structures used for space deployment. The fundamental static and dynamic mechanical properties of SMP and SMPC were characterized. The fiber-reinforced SMPC exhibited local postmicrobuckling behavior and obtained a high-reversible macroscale strain of 9.6%, which enabled the high-reversible deformation to be used for foldable structures in space. The state of critical failure of bending deformation was determined through microscale morphology observations and provided the upper limit in the design of SMPC structures. The evolution of the key shape memory properties (e.g., recovery speed and recovery ratio) during deformation cycles was characterized, and it offered the general recovery performance of a space deployable structure. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48532.  相似文献   

13.
Triple‐shape‐memory polymers are capable of memorizing two temporary shapes and sequentially recovering from the first temporary shape to the second temporary shape and eventually to the permanent shape upon exposure to a stimulus. In this study, unique three‐component, multilayered films with an ATBTA configuration [where A is polyurethane (PU), B is ethylene vinyl acetate (EVA), and T is poly(vinyl acetate) (PVAc)] were produced as a triple‐shape‐memory material via a forced‐assembly multilayer film coextrusion process from PU, EVA, and PVAc. The two well‐separated thermal transitions of the PU–EVA–PVAc film, the melting temperature of EVA and the glass‐transition temperature of PVAc, allow for the fixing of the two temporary shapes. The cyclic thermomechanical testing results confirm that the 257‐layered PU–EVA–PVAc films possessed outstanding triple‐shape‐memory performance in terms of the shape fixity and shape‐recovery ratios. This approach allowed greater design flexibility and simultaneous adjustment of the mechanical and shape‐memory properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44405.  相似文献   

14.
Poly(caprolactone) networks are well‐studied shape‐memory polymers owing to their high fixity and recovery, their ability to store large amounts of elastic energy, and their tunable shape‐triggering temperature. To elucidate the influence of network structure on shape‐memory features, poly(caprolactone) networks are prepared by reacting different molecular weight diacrylate prepolymers with trifunctional (trimethylolpropane tris(3‐mercaptopropionate), 3T ) or tetrafunctional (pentaerythritol tetrakis(3‐mercaptopropionate), 4T ) crosslinkers. Networks from 4T crosslinkers generally exhibit higher gel fractions, more elastically active strands, and superior shape‐memory properties compared with networks from 3T . Melted elastomers exhibit stress–strain behavior well described by the neo‐Hookean model. How the state of crystallization during the cold‐drawing process has a large effect on the draw stress, the network's shape fixity, and its elastic storage capacity is shown. Finally, the working strain range of networks is evaluated. Cured elastomers prepared from prepolymers with different molecular weights can store and release large amounts of elastic energy (>2 MJ m−3), over different ranges of tensile strain.  相似文献   

15.
The present study aims at detecting the critical criteria and corresponding critical impact energy for initiation of strain localization during explosive cladding of the Inconel 625 superalloy as a cladding material and low-carbon steel as a substrate. The results do not reveal adiabatic shear bands, which are the main signs of strain localization, within the superalloy in all studied impact energies up to 205 kJ. At impact energies greater than 78–114 kJ, strain localization is observed in low-carbon steel, and microcracks develop within the adiabatic shear bands. The Johnson-Cook model is used to explains the results obtained and to study the thermomechanical behavior of materials.  相似文献   

16.
The relationship between shape and properties memory effect, especially viscoelastic properties of polyurethane under study is the main aim of this research work. Tensile tests have been performed in order to introduce 100% of deformation in the polyurethane samples. Under this deformation, stress–relaxation experiments have been performed in order to eliminate the residual stresses. This deformation of the samples has been fixed by cooling. Recovery tests, then, were carried out at different isothermal temperatures that varied from 30°C to 60°C. Viscoelastic behavior has been studied by a biparabolic model and by using the Cole–Cole method. It was shown that this model describes the behavior of the polymer at the different states of shape memory tests. The constants of this model then have been determined. This study leads to a better understanding of the mechanism of shape memory effect. The comparison between the virgin polymer and the polymer after a recovery test by DMTA (dynamic mechanical thermal analysis) and by Cole–Cole method has illustrated that the polymer does not obtain its initial properties even when it was totally regained its initial shape. These results have been confirmed by three successive shape memory tests on the same sample and by comparing the mechanical characteristics of different cycles because “shape memory effect” and “properties memory effect” do not follow the same mechanisms. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
An anisotropic copolymer film of vinyl chloride and vinyl acetate, which has shape memory properties, was investigated by the molecular probe method, thermomechanical analysis, and scanning calorimetry. It was found that the amorphous-crystalline structure and the stress–strain state of the surface layer of the film differ from the structure and state of the inner layers. The molecular probe (limited diffusion of a solvent into the surface layer of the film) revealed the localization of the elastic deformation energy of a film, which was rapidly cooled in a stressed state during production. It is shown that destroying/crushing the stressed macrostructure of the film surface via plasticization and dissolution of the copolymer, eliminates the effects of the elastic energy release during thermally stimulated shrinkage.  相似文献   

18.
Polyurethane thin films with inherent two phase segregated characters are exceptional candidates for the development of shape memory materials. However, controlling the phase behavior of such complex structures for decoding their recovery behavior still experiences its early stage of development. In this work, polyurethane thin films were synthesized based on two polyols, ester-based polyols (ESP), and ether-based polyols (ETP) together with diphenyl diisocyanate (MDI). The effects of ingredient ratio of PETP (ether-based prepolymer)/PESP (ester-based prepolymer) on the chemical structure and final properties of polyurethanes were studied by the Fourier-transformed infrared spectroscopy (FTIR), the differential scanning calorimetry (DSC), the scanning electron microscopy (SEM), the dynamic mechanical thermal analysis (DMTA), a tensiometer, and the atomic force microscopy (AFM). The shape memory behaviors were explored by the thermomechanical cycles applied by a DMTA device in the controlled force mode. The PU films showed various properties compared with the bulk PU since they formed spherulitic textures with different structures. All the PU films except PU-0 showed high shape recovery ca. 90% in the first cycle with a large glassy storage modulus in the range of 2,800–4,040MPa, and a recovery ratio enhanced by increasing the number of cycle to a maximum of 95%.  相似文献   

19.
A series of shape memory polyurethanes (SMPUs) was prepared from polycaprolactone diol (PCL) 4000, 1,4‐butanediol (BDO), dimethylol propionic acid (DMPA), triethylamine, and 4, 4′‐diphenylmethane diisocyanate (MDI), to which excess MDI or glycerin were added to obtain crosslinked shape memory polyurethanes. Their mechanical, thermomechanical, thermal and shape memory properties were investigated by using differential scanning calorimetry (DSC), Fourier‐transform (FT‐IR) spectroscopy, dynamic mechanical analysis (DMA) and tensile testing. The results showed that crosslinked SMPUs have better thermal and thermomechanical properties than those prepared from linear polyurethanes and display good shape memory effects. Copyright © 2005 Society of Chemical Industry  相似文献   

20.
The effects of hydrothermal ageing on the thermomechanical properties of high performance epoxy and its nanocomposite were studied. The epoxy–clay nanocomposite was prepared through a recently developed “slurry‐compounding” approach. The cured samples were immersed in distilled water at 60°C for different periods of time before subjecting to characterization. The storage modulus, relaxation behavior, fracture toughness, and tensile properties were investigated. It was found that the storage modulus and α‐relaxation were strongly affected by water uptake, while the fracture toughness and Young's modulus were less influenced. Dependence of tensile strength and strain at break on water uptake was found to be different in neat epoxy and epoxy–clay systems. POLYM. ENG. SCI., 46:215–221, 2006. © 2005 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号