首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Computation of compressible steady‐state flows using a high‐order discontinuous Galerkin finite element method is presented in this paper. An accurate representation of the boundary normals based on the definition of the geometries is used for imposing solid wall boundary conditions for curved geometries. Particular attention is given to the impact and importance of slope limiters on the solution accuracy for flows with strong discontinuities. A physics‐based shock detector is introduced to effectively make a distinction between a smooth extremum and a shock wave. A recently developed, fast, low‐storage p‐multigrid method is used for solving the governing compressible Euler equations to obtain steady‐state solutions. The method is applied to compute a variety of compressible flow problems on unstructured grids. Numerical experiments for a wide range of flow conditions in both 2D and 3D configurations are presented to demonstrate the accuracy of the developed discontinuous Galerkin method for computing compressible steady‐state flows. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
 Numerical methods are presented for the simulation of steady and unsteady micro gas flows with moving boundaries found in micro scale fluidic devices. Both steady and unsteady flows are calculated by using an implicit real-time discretization and a dual-time stepping scheme implemented in a high-order upwind finite-volume unstructured-grid Navier–Stokes solver. For moving boundary problems, a new dynamic mesh method has been developed which is shown to be robust in handling large mesh deformation. Micro-scale flows studied with the methods developed include flow in micro channels, unsteady flow around a micro cylinder in oscillation and transport processes in micro pumps. The simulation is based on the continuum fluid model (the compressible Navier–Stokes equations) with slip boundary conditions implemented in the context of unstructured grids as the micro flows studied are all in the slip flow regime. Results are presented to validate the methods and demonstrate their applications to the analysis and design of micro fluidic devices. The implicit dual-time stepping scheme is found to be robust and efficient in dealing with both steady and unsteady micro flows. The unstructured-grid solver proves to be very flexible in dealing with complex geometries such as micro pumps. This is the first known report on the use of finite-volume unstructured grid solver for studying micro flows based on the slip boundary condition with moving boundaries.  相似文献   

3.
Three preconditioners proposed by Eriksson, Choi and Merkel, and Turkel are implemented in a 2D upwind Euler flow solver on unstructured meshes. The mathematical formulations of these preconditioning schemes for different sets of primitive variables are drawn, and their eigenvalues and eigenvectors are compared with each other. For this purpose, these preconditioning schemes are expressed in a unified formulation. A cell‐centered finite volume Roe's method is used for the discretization of the preconditioned Euler equations. The accuracy and performance of these preconditioning schemes are examined by computing steady low Mach number flows over a NACA0012 airfoil and a two‐element NACA4412–4415 airfoil for different conditions. The study shows that these preconditioning schemes greatly enhance the accuracy and convergence rate of the solution of low Mach number flows. The study indicates that the preconditioning methods implemented provide nearly the same results in accuracy; however, they give different performances in convergence rate. It is demonstrated that although the convergence rate of steady solutions is almost independent of the choice of primitive variables and the structure of eigenvectors and their orthogonality, the condition number of the system of equations plays an important role, and it determines the convergence characteristics of solutions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The paper describes a solver for the compressible inviscid flow equations which is based on a flux vector splitting strategy able to deal with chemical reaction effects. The methodology here adopted is based on a modification of the Flux Vector Splitting technique due to van Leer.11 The scheme operates on completely unstructured grids and has been coupled with an adaptive remeshing procedure to compute high speed flows. Solutions for two-dimensional problems for non-reactive and reactive air in thermodynamic equilibrium are presented.  相似文献   

5.
A new dynamic one‐equation subgrid‐scale (SGS) model is presented for large eddy simulations of turbulent flows. The new model, combining both advantages of the dynamic one‐equation SGS model (J. Appl. Mech. (ASME) 2006; 73 :368–373) and the wall‐adapting local eddy viscosity model (Turbulence Combustion 1999; 62 :183–200), has three prominent features: (1) one‐equation model, suitable for relatively coarse grid situations and simulation of high Reynolds number flows; (2) no test‐filtering operation is needed in determination of dynamic parameters, suitable for low‐order numerical discretization and unstructured or hybrid grid situations; and (3) treating the production of SGS kinetic energy and energy loss in grid‐scale (GS) portion due to SGS motion with different dynamic mechanisms, which is considered to be more reasonable than the local and instantaneous dynamic mechanism as adopted by most existing one‐equation dynamic SGS models. Computational examinations have been conducted for flows with Reynolds number ranging from 3000–70000, revealing that there are three promising aspects of the new SGS model: (1) adaptability for a wide range of flow regime; (2) less grid dependence; and (3) potential of wide applications in complex geometries and high Reynolds number turbulent flows. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents the development and validation of a parallel unstructured‐grid fluid–structure interaction (FSI) solver for the simulation of unsteady incompressible viscous flow with long elastic moving and compliant boundaries. The Navier–Stokes solver on unstructured moving grid using the arbitrary Lagrangian Eulerian formulation is based on the artificial compressibility approach and a high‐order characteristics‐based finite‐volume scheme. Both unsteady flow and FSI are calculated with a matrix‐free implicit dual time‐stepping scheme. A membrane model has been formulated to study fluid flow in a channel with an elastic membrane wall and their interactions. This model can be employed to calculate arbitrary wall movement and variable tension along the membrane, together with a dynamic mesh method for large deformation of the flow field. The parallelization of the fluid–structure solver is achieved using the single program multiple data programming paradigm and message passing interface for communication of data. The parallel solver is used to simulate fluid flow in a two‐dimensional channel with and without moving membrane for validation and performance evaluation purposes. The speedups and parallel efficiencies obtained by this method are excellent, using up to 16 processors on a SGI Origin 2000 parallel computer. A maximum speedup of 23.14 could be achieved on 16 processors taking advantage of an improved handling of the membrane solver. The parallel results obtained are compared with those using serial code and they are found to be identical. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A velocity‐linked algorithm for solving unsteady fluid–structure interaction (FSI) problems in a fully coupled manner is developed using the arbitrary Lagrangian–Eulerian method. The P2/P1 finite element is used to spatially discretize the incompressible Navier–Stokes equations and structural equations, and the generalized‐ α method is adopted for temporal discretization. Common velocity variables are employed at the fluid–structure interface for the strong coupling of both equations. Because of the velocity‐linked formulation, kinematic compatibility is automatically satisfied and forcing terms do not need to be calculated explicitly. Both the numerical stability and the convergence characteristics of an iterative solver for the coupled algorithm are investigated by solving the FSI problem of flexible tube flows. It is noteworthy that the generalized‐ α method with small damping is free from unstable velocity fields. However, the convergence characteristics of the coupled system deteriorate greatly for certain Poisson's ratios so that direct solvers are essential for these cases. Furthermore, the proposed method is shown to clearly display the advantage of considering FSI in the simulation of flexible tube flows, while enabling much larger time‐steps than those adopted in some previous studies. This is possible through the strong coupling of the fluid and structural equations by employing common primitive variables. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

This paper discusses the D‐pole placement problem of discrete time‐delay systems where the delay duration can be any positive integer. One sufficient condition is proposed to insure all the closed‐loop eigenvalues of discrete delay systems be located inside a specific disk D(α, r). Several criteria are used to retain all the eigenvalues of discrete delay systems with structured or unstructured parametric perturbations inside the same disk. Finally, some illustrative examples are given to demonstrate our results.  相似文献   

9.
A simple embedded domain method for node‐based unstructured grid solvers is presented. The key modification of the original, edge‐based solver is to remove all geometry‐parameters (essentially the normals) belonging to edges cut by embedded surface faces. Several techniques to improve the treatment of boundary points close to the immersed surfaces are explored. Alternatively, higher‐order boundary conditions are achieved by duplicating crossed edges and their endpoints. Adaptive mesh refinement based on proximity to or the curvature of the embedded CSD surfaces is used to enhance the accuracy of the solution. User‐defined or automatic deactivation for the regions inside immersed solid bodies is employed to avoid unnecessary work. Several examples are included that show the viability of this approach for inviscid and viscous, compressible and incompressible, steady and unsteady flows, as well as coupled fluid–structure problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Multiphase flows are relevant in several industrial processes mainly because they are present in the production of a large diversity of products. Hence, the availability of accurate numerical modeling tools, able to cope with this type of flows, is of major significance to provide detailed information about the system characteristics, in order to guide the design activity. This study presents a detailed assessment of a multiphase flow solver able to couple Eulerian and Lagrangian phases, the last modeled through the discrete particle method. The numerical code is already implemented in the open source computational fluid dynamics software package \(\hbox {OpenFOAM}^\circledR \). The solver (DPMFoam) is firstly used to simulate the collision between two particles, for which a good correlation was obtained with the theoretical impulse force value. Subsequently, the solver is employed in the simulation of a pseudo 2D gas-solid flow in a fluidized bed. In this case study, the results obtained for the bubble patterns, time-average flow patterns, bed expansion dynamics and particle phase energy analysis are in agreement with the experimental and numerical results available in the literature. In addition, the numerical pressure drop for the fluidized bed is computed and compared with the analytical Ergun’s pressure drop equation. The accuracy of the numerical results was found to be sensitive to the solid fraction estimation.  相似文献   

11.
A bridge is built between projection methods and SIMPLE type methods (Semi‐Implicit Method for Pressure‐Linked Equation). A general second‐order accurate projection method is developed for the simulation of incompressible unsteady flows by employing a non‐linear update of pressure term as Θn?pn+1+(In)?pn, where Θn is a coefficient matrix, which may depend on the grid size, time step and even velocity. It includes three‐ and four‐step projection methods. The standard SIMPLE method is written in a concise formula for steady and unsteady flows. It is proven that SIMPLE type methods have second‐order temporal accuracy for unsteady flows. The classical second‐order projection method and SIMPLE type methods are united within the framework of the general second‐order projection formula. Two iteration algorithms of SIMPLE type methods for unsteady flows are described and discussed. In addition, detailed formulae are provided for general projection methods by using the Runge–Kutta technique to update the convective term and Crank–Nicholson scheme for the diffusion term. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Multigrid is a popular solution method for the set of linear algebraic equations that arise from PDEs discretized with the finite element method. The application of multigrid to unstructured grid problems, however, is not well developed. We discuss a method, that uses many of the same techniques as the finite element method itself, to apply standard multigrid algorithms to unstructured finite element problems. We use maximal independent sets (MISs) as a mechanism to automatically coarsen unstructured grids; the inherent flexibility in the selection of an MIS allows for the use of heuristics to improve their effectiveness for a multigrid solver. We present parallel algorithms, based on geometric heuristics, to optimize the quality of MISs and the meshes constructed from them, for use in multigrid solvers for 3D unstructured problems. We discuss parallel issues of our algorithms, multigrid solvers in general, and the parallel finite element application that we have developed to test our solver on challenging problems. We show that our solver, and parallel finite element architecture, does indeed scale well, with test problems in 3D large deformation elasticity and plasticity, with 40 million degree of freedom problem on 240 IBM four‐way SMP PowerPC nodes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a comprehensive finite‐element modelling approach to electro‐osmotic flows on unstructured meshes. The non‐linear equation governing the electric potential is solved using an iterative algorithm. The employed algorithm is based on a preconditioned GMRES scheme. The linear Laplace equation governing the external electric potential is solved using a standard pre‐conditioned conjugate gradient solver. The coupled fluid dynamics equations are solved using a fractional step‐based, fully explicit, artificial compressibility scheme. This combination of an implicit approach to the electric potential equations and an explicit discretization to the Navier–Stokes equations is one of the best ways of solving the coupled equations in a memory‐efficient manner. The local time‐stepping approach used in the solution of the fluid flow equations accelerates the solution to a steady state faster than by using a global time‐stepping approach. The fully explicit form and the fractional stages of the fluid dynamics equations make the system memory efficient and free of pressure instability. In addition to these advantages, the proposed method is suitable for use on both structured and unstructured meshes with a highly non‐uniform distribution of element sizes. The accuracy of the proposed procedure is demonstrated by solving a basic micro‐channel flow problem and comparing the results against an analytical solution. The comparisons show excellent agreement between the numerical and analytical data. In addition to the benchmark solution, we have also presented results for flow through a fully three‐dimensional rectangular channel to further demonstrate the application of the presented method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we introduce an extension of Van Leer's slope limiter for two‐dimensional discontinuous Galerkin (DG) methods on arbitrary unstructured quadrangular or triangular grids. The aim is to construct a non‐oscillatory shock capturing DG method for the approximation of hyperbolic conservative laws without adding excessive numerical dispersion. Unlike some splitting techniques that are limited to linear approximations on rectangular grids, in this work, the solution is approximated by means of piecewise quadratic functions. The main idea of this new reconstructing and limiting technique follows a well‐known approach where local maximum principle regions are defined by enforcing some constraints on the reconstruction of the solution. Numerical comparisons with some existing slope limiters on structured as well as on unstructured meshes show a superior accuracy of our proposed slope limiters. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
A simple explicit–implicit finite element tearing and interconnecting (FETI) algorithm (AFETI‐EI algorithm) is presented for partitioned transient analysis of linear structural systems. The present algorithm employs two decompositions. First, the total system is partitioned via spatial or domain decomposition to obtain the governing equations of motions for each partitioned domain. Second, for each partitioned subsystem, the governing equations are modally decomposed into the rigid‐body and deformational equations. The resulting rigid‐body equations are integrated by an explicit integrator, for its stability is not affected by step‐size restriction on account of zero‐frequency contents (ω = 0). The modally decomposed partitioned deformation equations of motion are integrated by an unconditionally stable implicit integration algorithm. It is shown that the present AFETI‐EI algorithm exhibits unconditional stability and that the resulting interface problem possesses the same solution matrix profile as the basic FETI static problems. The present simple dynamic algorithm, as expected, falls short of the performance of the FETI‐DP but offers a similar performance of implicit two‐level FETI‐D algorithm with a much cheaper coarse solver; hence, its simplicity may offer relatively easy means for conducting parallel analysis of both static and dynamic problems by employing the same basic scalable FETI solver, especially for research‐mode numerical experiments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
An adaptive Finite Point Method (FPM) for solving shallow water problems is presented. The numerical methodology we propose, which is based on weighted‐least squares approximations on clouds of points, adopts an upwind‐biased discretization for dealing with the convective terms in the governing equations. The viscous and source terms are discretized in a pointwise manner and the semi‐discrete equations are integrated explicitly in time by means of a multi‐stage scheme. Moreover, with the aim of exploiting meshless capabilities, an adaptive h‐refinement technique is coupled to the described flow solver. The success of this approach in solving typical shallow water flows is illustrated by means of several numerical examples and special emphasis is placed on the adaptive technique performance. This has been assessed by carrying out a numerical simulation of the 26th December 2004 Indian Ocean tsunami with highly encouraging results. Overall, the adaptive FPM is presented as an accurate enough, cost‐effective tool for solving practical shallow water problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a finite element solver for the simulation of steady non‐Newtonian flow problems, using a regularized Bingham model, with adaptive mesh refinement capabilities. The solver is based on a stabilized formulation derived from the variational multiscale framework. This choice allows the introduction of an a posteriori error indicator based on the small scale part of the solution, which is used to drive a mesh refinement procedure based on element subdivision. This approach applied to the solution of a series of benchmark examples, which allow us to validate the formulation and assess its capabilities to model 2D and 3D non‐Newtonian flows.  相似文献   

18.
This study compares the performance of a relatively new Petrov–Galerkin smoothed aggregation (PGSA) multilevel preconditioner with a nonsmoothed aggregation (NSA) multilevel preconditioner to accelerate the convergence of Krylov solvers on systems arising from a drift‐diffusion model for semiconductor devices. PGSA is designed for nonsymmetric linear systems, Ax=b, and has two main differences with smoothed aggregation. Damping parameters for smoothing interpolation basis functions are now calculated locally and restriction is no longer the transpose of interpolation but instead corresponds to applying the interpolation algorithm to AT and then transposing the result. The drift‐diffusion system consists of a Poisson equation for the electrostatic potential and two convection–diffusion‐reaction‐type equations for the electron and hole concentration. This system is discretized in space with a stabilized finite element method and the discrete solution is obtained by using a fully coupled preconditioned Newton–Krylov solver. The results demonstrate that the PGSA preconditioner scales significantly better than the NSA preconditioner, and can reduce the solution time by more than a factor of two for a problem with 110 million unknowns on 4000 processors. The solution of a 1B unknown problem on 24 000 processor cores of a Cray XT3/4 machine was obtained using the PGSA preconditioner. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The main purpose of this work is to present a new parallel direct solver: Dissection solver. It is based on LU factorization of the sparse matrix of the linear system and allows to detect automatically and handle properly the zero‐energy modes, which are important when dealing with DDM. A performance evaluation and comparisons with other direct solvers (MUMPS, DSCPACK) are also given for both sequential and parallel computations. Results of numerical experiments with a two‐level parallelization of large‐scale structural analysis problems are also presented: FETI is used for the global problem parallelization and Dissection for the local multithreading. In this framework, the largest problem we have solved is of an elastic solid composed of 400 subdomains running on 400 computation nodes (3200 cores) and containing about 165 millions dof. The computation of one single iteration consumes less than 20 min of CPU time. Several comparisons to MUMPS are given for the numerical computation of large‐scale linear systems on a massively parallel cluster: performances and weaknesses of this new solver are highlighted. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
An unstructured finite element solver to evaluate the ship‐wave problem is presented. The scheme uses a non‐structured finite element algorithm for the Euler or Navier–Stokes flow as for the free‐surface boundary problem. The incompressible flow equations are solved via a fractional step method whereas the non‐linear free‐surface equation is solved via a reference surface which allows fixed and moving meshes. A new non‐structured stabilized approximation is used to eliminate spurious numerical oscillations of the free surface. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号